
A current of 10A is flowing in a wire of length $1.5m$. A force of $15N$ acts on it when it is placed in a uniform magnetic field of $2T$. The angle between the magnetic field and the direction of the current is:
(A) ${30^ \circ }$
(B) ${45^ \circ }$
(C) ${60^ \circ }$
(D) ${90^ \circ }$
Answer
149.1k+ views
Hint: To solve this question, we have to use the formula of the force on a current carrying wire when it is placed in a uniform magnetic field. Then we have to substitute the given values into that formula to get the required value of the angle between the magnetic field and the direction of the current.
Formula used: The formula used to solve this question is given by
\[\vec F = I\left( {\vec l \times \vec B} \right)\], here $\vec F$ is the force acting on a wire having a length of $l$ and carrying a current of $I$, when it is placed in a uniform magnetic field of $\vec B$.
Complete step by step solution:
Let the angle between the magnetic field be $\theta $.
We know that the force exerted on a current carrying wire when it is placed in a magnetic field is given by
\[\vec F = I\left( {\vec l \times \vec B} \right)\]
Writing the magnitudes on both the sides, we get
\[\left| {\vec F} \right| = I\left| {\left( {\vec l \times \vec B} \right)} \right|\]
$ \Rightarrow F = IlB\sin \theta $
According to the question, $F = 15N$, $I = 10{\text{A}}$, $l = 1.5m$, and $B = 2T$. Substituting these above, we get
$15 = 10 \times 1.5 \times 2 \times \sin \theta $
$15 = 30\sin \theta $
Dividing both the sides by $30$ we get
$\sin \theta = \dfrac{{15}}{{30}}$
$ \Rightarrow \sin \theta = 0.5$
Taking sine inverse both the sides, we finally get
$\theta = {30^ \circ }$
Thus, the angle between the magnetic field and the direction of the current is equal to ${30^ \circ }$.
Hence, the correct answer is option A.
Note: Although the cross product which appears in the expression for force on a current carrying wire is between the length and the magnetic field, it is defined between the magnetic field and the direction of current. This is done because we cannot take the cross product of the current as it is a scalar quantity.
Formula used: The formula used to solve this question is given by
\[\vec F = I\left( {\vec l \times \vec B} \right)\], here $\vec F$ is the force acting on a wire having a length of $l$ and carrying a current of $I$, when it is placed in a uniform magnetic field of $\vec B$.
Complete step by step solution:
Let the angle between the magnetic field be $\theta $.
We know that the force exerted on a current carrying wire when it is placed in a magnetic field is given by
\[\vec F = I\left( {\vec l \times \vec B} \right)\]
Writing the magnitudes on both the sides, we get
\[\left| {\vec F} \right| = I\left| {\left( {\vec l \times \vec B} \right)} \right|\]
$ \Rightarrow F = IlB\sin \theta $
According to the question, $F = 15N$, $I = 10{\text{A}}$, $l = 1.5m$, and $B = 2T$. Substituting these above, we get
$15 = 10 \times 1.5 \times 2 \times \sin \theta $
$15 = 30\sin \theta $
Dividing both the sides by $30$ we get
$\sin \theta = \dfrac{{15}}{{30}}$
$ \Rightarrow \sin \theta = 0.5$
Taking sine inverse both the sides, we finally get
$\theta = {30^ \circ }$
Thus, the angle between the magnetic field and the direction of the current is equal to ${30^ \circ }$.
Hence, the correct answer is option A.
Note: Although the cross product which appears in the expression for force on a current carrying wire is between the length and the magnetic field, it is defined between the magnetic field and the direction of current. This is done because we cannot take the cross product of the current as it is a scalar quantity.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

Charging and Discharging of Capacitor

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

The force of interaction of two dipoles if the two class 12 physics JEE_Main

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

The force between two short electric dipoles placed class 12 physics JEE_Main

A quarter cylinder of radius R and refractive index class 12 physics JEE_Main

The deBroglie wavelength of a bus moving speed v is class 12 physics JEE_Main

A proton accelerated by a potential difference of 500 class 12 physics JEE_Main

A 50HzAC current of crest value of 1A flows through class 12 physics JEE_Main
