
A current of 10A is flowing in a wire of length $1.5m$. A force of $15N$ acts on it when it is placed in a uniform magnetic field of $2T$. The angle between the magnetic field and the direction of the current is:
(A) ${30^ \circ }$
(B) ${45^ \circ }$
(C) ${60^ \circ }$
(D) ${90^ \circ }$
Answer
139.5k+ views
Hint: To solve this question, we have to use the formula of the force on a current carrying wire when it is placed in a uniform magnetic field. Then we have to substitute the given values into that formula to get the required value of the angle between the magnetic field and the direction of the current.
Formula used: The formula used to solve this question is given by
\[\vec F = I\left( {\vec l \times \vec B} \right)\], here $\vec F$ is the force acting on a wire having a length of $l$ and carrying a current of $I$, when it is placed in a uniform magnetic field of $\vec B$.
Complete step by step solution:
Let the angle between the magnetic field be $\theta $.
We know that the force exerted on a current carrying wire when it is placed in a magnetic field is given by
\[\vec F = I\left( {\vec l \times \vec B} \right)\]
Writing the magnitudes on both the sides, we get
\[\left| {\vec F} \right| = I\left| {\left( {\vec l \times \vec B} \right)} \right|\]
$ \Rightarrow F = IlB\sin \theta $
According to the question, $F = 15N$, $I = 10{\text{A}}$, $l = 1.5m$, and $B = 2T$. Substituting these above, we get
$15 = 10 \times 1.5 \times 2 \times \sin \theta $
$15 = 30\sin \theta $
Dividing both the sides by $30$ we get
$\sin \theta = \dfrac{{15}}{{30}}$
$ \Rightarrow \sin \theta = 0.5$
Taking sine inverse both the sides, we finally get
$\theta = {30^ \circ }$
Thus, the angle between the magnetic field and the direction of the current is equal to ${30^ \circ }$.
Hence, the correct answer is option A.
Note: Although the cross product which appears in the expression for force on a current carrying wire is between the length and the magnetic field, it is defined between the magnetic field and the direction of current. This is done because we cannot take the cross product of the current as it is a scalar quantity.
Formula used: The formula used to solve this question is given by
\[\vec F = I\left( {\vec l \times \vec B} \right)\], here $\vec F$ is the force acting on a wire having a length of $l$ and carrying a current of $I$, when it is placed in a uniform magnetic field of $\vec B$.
Complete step by step solution:
Let the angle between the magnetic field be $\theta $.
We know that the force exerted on a current carrying wire when it is placed in a magnetic field is given by
\[\vec F = I\left( {\vec l \times \vec B} \right)\]
Writing the magnitudes on both the sides, we get
\[\left| {\vec F} \right| = I\left| {\left( {\vec l \times \vec B} \right)} \right|\]
$ \Rightarrow F = IlB\sin \theta $
According to the question, $F = 15N$, $I = 10{\text{A}}$, $l = 1.5m$, and $B = 2T$. Substituting these above, we get
$15 = 10 \times 1.5 \times 2 \times \sin \theta $
$15 = 30\sin \theta $
Dividing both the sides by $30$ we get
$\sin \theta = \dfrac{{15}}{{30}}$
$ \Rightarrow \sin \theta = 0.5$
Taking sine inverse both the sides, we finally get
$\theta = {30^ \circ }$
Thus, the angle between the magnetic field and the direction of the current is equal to ${30^ \circ }$.
Hence, the correct answer is option A.
Note: Although the cross product which appears in the expression for force on a current carrying wire is between the length and the magnetic field, it is defined between the magnetic field and the direction of current. This is done because we cannot take the cross product of the current as it is a scalar quantity.
Recently Updated Pages
JEE Main 2025 April 2 Shift 1 Paper Analysis, Answer Key and Student Reactions

JEE Main 2025 April 2 Shift 1 Maths Paper with Answers & Analysis

JEE Mains 2025 April 2 Shift 1 Question Paper with Answer Key - Physics

JEE Main 2025 April 2 Shift 1 Chemistry Paper with Answers - Detailed Analysis

Top Benefits of Vedantu's Online JEE Coaching for Success

Vedantu JEE Offline Coaching Fees & Discounts – Complete Details

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
