
A cubical vessel of height $1m$ is full of water. Work done by gravity in taking water out of the vessel will be :
1)$5000J$
2)$10000J$
3)$5J$
4)$10J$
Answer
221.1k+ views
Hint As we have to find the work done by the gravitational force, To calculate the work done by the gravitational force, we will adopt a simplifying approach and will assume that air resistance is negligible.
Complete step by step solution
Correct answer is $5000J$
As given
The height of the cubical vessel:
$h = 1m$
Here $h$ is the height of the vessel (total height)
Center of mass (COM) of the vessel is located at $\dfrac{h}{2}$
So, we can write
$h' = \dfrac{h}{2} = \dfrac{1}{2}m$
Also, the volume of the vessel (water) would be
${h^3} = {1^3} = 1{m^3}$
And mass of the water would be
$m = \rho V$
So we get
$m = 1000 \times 1 = 1000kg$
Because density of the water is $1000kg/{m^3}$
Now as we have to find the work done by the gravitational force
So work done for pumping out water is equal to the negative of change in its potential energy.
Hence,
$W = - \Delta P.E$
Where W is the work done which is equal to change in potential energy
Therefore,
$W = - (P.{E_f} - P.{E_i})$
$P.{E_f}$ is the final potential energy and
$P.{E_i}$ is the initial potential energy
After taking water out the final potential energy $P.{E_f}$ would be 0
And initial potential energy $P.{E_i}$ would be the initial potential energy which would be equal to $mgh'$
So, we get
$W = - (0 - mgh')$
$W = mgh'$
On putting values we get
$W = 1000 \times 10 \times \dfrac{1}{2} = 5000J$
Note Remember while measuring the energy the height should always be measured from the center of mass (COM) and moreover always use units carefully as in this case the value of the density of water must be put carefully.
Complete step by step solution
Correct answer is $5000J$
As given
The height of the cubical vessel:
$h = 1m$
Here $h$ is the height of the vessel (total height)
Center of mass (COM) of the vessel is located at $\dfrac{h}{2}$
So, we can write
$h' = \dfrac{h}{2} = \dfrac{1}{2}m$
Also, the volume of the vessel (water) would be
${h^3} = {1^3} = 1{m^3}$
And mass of the water would be
$m = \rho V$
So we get
$m = 1000 \times 1 = 1000kg$
Because density of the water is $1000kg/{m^3}$
Now as we have to find the work done by the gravitational force
So work done for pumping out water is equal to the negative of change in its potential energy.
Hence,
$W = - \Delta P.E$
Where W is the work done which is equal to change in potential energy
Therefore,
$W = - (P.{E_f} - P.{E_i})$
$P.{E_f}$ is the final potential energy and
$P.{E_i}$ is the initial potential energy
After taking water out the final potential energy $P.{E_f}$ would be 0
And initial potential energy $P.{E_i}$ would be the initial potential energy which would be equal to $mgh'$
So, we get
$W = - (0 - mgh')$
$W = mgh'$
On putting values we get
$W = 1000 \times 10 \times \dfrac{1}{2} = 5000J$
Note Remember while measuring the energy the height should always be measured from the center of mass (COM) and moreover always use units carefully as in this case the value of the density of water must be put carefully.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Understanding Atomic Structure for Beginners

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

CBSE Important Questions for Class 11 Physics Units and Measurement - 2025-26

NCERT Solutions for Class 11 Physics Chapter 5 Work Energy And Power 2025-26

Understanding Charging and Discharging of Capacitors

Free Radical Substitution and Its Stepwise Mechanism

