
A cubical block of side \[0.5m\] floats on water with \[30\% \] of its volume under water. What is the maximum weight that can be put on the block without fully submerging it underwater? (take density of water \[ = {10^3}kg/{m^3}\])
(A) \[65.4kg\]
(B) \[87.5kg\]
(C) \[30.1kg\]
(D) \[46.3kg\]
Answer
217.2k+ views
Hint: The extra mass needed to be added must at maximum be equal to the mass of the water displaced. The volume submerged is equal to the volume rise (or displaced) of the water.
Formula used: In this solution we will be using the following formulae;
\[m = \rho V\] where \[\rho \] is density and \[V\] is volume
Complete Step-by-Step Solution:
A cubical block is said to float on water with a particular percentage of the volume submerged. Generally, if we keep adding mass on this cubical block, more volume of the block will be submerged. at a certain mass, the block will just almost be completely submerged such that any extra mass added will have the block sinking. We are to determine this maximum mass above which the block becomes completely submerged.
To do so, we must note that an object placed in a fluid experiences a buoyancy effect which is equal to the weight of the liquid displaced by the object. For the extra weight which would be submerged, we have that
\[{W_o} = {W_w}\]
But \[W = mg\]
since \[m = \rho V\] where \[\rho \] is density and \[V\] is volume. Hence,
\[W = {m_o}g = {m_w}g = {\rho _w}{V_w}g\] where the subscript O and w signifies object and water respectively
Therefore,
\[{m_o} = {\rho _w}{V_o}\] where \[{V_o}\] is the maximum volume of an object to be submerged.
Since, 30 percent is submerged, then 70 percent more is the maximum to be submerged. hence,
\[{m_o} = {\rho _w}\left( {0.7{L^3}} \right)\] since the volume of a cube is \[{L^3}\].
Hence, by inserting all known values, we get
\[{m_o} = 1000\left( {0.7{{\left( {0.5} \right)}^3}} \right)\]
\[{m_o} = 87.5kg\]
Hence, the correct option is B
Note: For clarity, from
\[W = {m_o}g = {m_w}g = {\rho _w}{V_w}g\]
\[ \Rightarrow m = {\rho _w}{V_w}\] , the equation became
\[m = {\rho _w}{V_o}\].
This can occur because a special dimension must be conserved. When the object is dipped, it must occupy a space, and hence, the water must displace by the exact same dimension of space. So we say that the volume submerged is equal to the liquid displaced.
Formula used: In this solution we will be using the following formulae;
\[m = \rho V\] where \[\rho \] is density and \[V\] is volume
Complete Step-by-Step Solution:
A cubical block is said to float on water with a particular percentage of the volume submerged. Generally, if we keep adding mass on this cubical block, more volume of the block will be submerged. at a certain mass, the block will just almost be completely submerged such that any extra mass added will have the block sinking. We are to determine this maximum mass above which the block becomes completely submerged.
To do so, we must note that an object placed in a fluid experiences a buoyancy effect which is equal to the weight of the liquid displaced by the object. For the extra weight which would be submerged, we have that
\[{W_o} = {W_w}\]
But \[W = mg\]
since \[m = \rho V\] where \[\rho \] is density and \[V\] is volume. Hence,
\[W = {m_o}g = {m_w}g = {\rho _w}{V_w}g\] where the subscript O and w signifies object and water respectively
Therefore,
\[{m_o} = {\rho _w}{V_o}\] where \[{V_o}\] is the maximum volume of an object to be submerged.
Since, 30 percent is submerged, then 70 percent more is the maximum to be submerged. hence,
\[{m_o} = {\rho _w}\left( {0.7{L^3}} \right)\] since the volume of a cube is \[{L^3}\].
Hence, by inserting all known values, we get
\[{m_o} = 1000\left( {0.7{{\left( {0.5} \right)}^3}} \right)\]
\[{m_o} = 87.5kg\]
Hence, the correct option is B
Note: For clarity, from
\[W = {m_o}g = {m_w}g = {\rho _w}{V_w}g\]
\[ \Rightarrow m = {\rho _w}{V_w}\] , the equation became
\[m = {\rho _w}{V_o}\].
This can occur because a special dimension must be conserved. When the object is dipped, it must occupy a space, and hence, the water must displace by the exact same dimension of space. So we say that the volume submerged is equal to the liquid displaced.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

