
A conical pendulum of length $1m$ makes an angle $\theta = 45^\circ $ w.r.t Z−axis and moves in a circle in the $XY$ plane. The radius of the circle is $0.4m$ and its centre is vertically below $O$. The speed of the pendulum, in its circular path, will be: \[{\text{(Take g = 9}}{\text{.8m}}{{\text{s}}^{ - 2}})\]

(A) $0.4{\text{m/s}}$
(B) $4{\text{m/s}}$
(C) $0.2{\text{m/s}}$
(D) $2{\text{m/s}}$
Answer
124.8k+ views
Hint A conical pendulum moves in a circular path whose radius is given. The angle in which the conical pendulum makes with the circle is provided. We have to find the speed of the pendulum, for this we should have known the concept of conical pendulum.
Complete step by step answer
A conical pendulum consists of a mass on the end of a string suspended from a point which moves in a circular path.
Let us consider a conical pendulum having the mass $m$ revolving in a circle at a constant velocity $v$ on a string of length $l$ at an angle of $\theta $.
There will be two forces acting on the mass,
Tension and centripetal force.
The Tension exerted can be resolved into a horizontal component, \[Tsin\left( \theta \right)\] and vertical component \[Tcos\left( \theta \right)\].
The horizontal component of the tension experience centripetal force since the conical pendulum travels in a circular path of radius r with a constant velocity v
$T\sin \theta = \dfrac{{m{v^2}}}{r}$
We can rearrange the above equation as
$T = \dfrac{{m{v^2}}}{{r\sin \theta }}{\text{ }} \to {\text{1}}$
Since there is no acceleration in the vertical direction, the vertical component is equal and opposite to the weight of the mass so, the vertical component of tension is
$T\cos \theta = mg$
We can rearrange the above equation as
$T = \dfrac{{mg}}{{\cos \theta }}{\text{ }} \to 2$
Equating 1 and 2
$ \Rightarrow \dfrac{{m{v^2}}}{{r\sin \theta }} = \dfrac{{mg}}{{\cos \theta }}$
\[ \Rightarrow {v^2} = \dfrac{{gr\sin \theta }}{{\cos \theta }}\]
\[ \Rightarrow {v^2} = gr\tan \theta {\text{ }} \to 3\]
Given that,
The radius of the circular path, $r = 0.4m$
The conical pendulum makes an angle $\theta = 45^\circ $
The acceleration due to gravity, $g = 9.8{\text{m/s}}$
Substitute these given values in the equation 3
\[ \Rightarrow {v^2} = gr\tan \theta \]
\[ \Rightarrow {v^2} = 9.8 \times 0.4 \times \tan 45^\circ \]
\[ \Rightarrow {v^2} = 9.8 \times 0.4 \times 1\]
\[ \Rightarrow {v^2} = 3.9 = 4{\text{m/s}}\]
\[ \Rightarrow v = \sqrt 4 {\text{m/s}}\]
\[ \Rightarrow v = 2{\text{m/s}}\]
The speed of the pendulum is \[2{\text{m/s}}\]
Hence the correct answer is option D) \[2{\text{m/s}}\]
Note A conical pendulum is similar to an ordinary simple pendulum, instead of swinging back and forth, the mass of a conical pendulum moves in a circle with the string tracing out a cone.
Complete step by step answer
A conical pendulum consists of a mass on the end of a string suspended from a point which moves in a circular path.
Let us consider a conical pendulum having the mass $m$ revolving in a circle at a constant velocity $v$ on a string of length $l$ at an angle of $\theta $.
There will be two forces acting on the mass,
Tension and centripetal force.
The Tension exerted can be resolved into a horizontal component, \[Tsin\left( \theta \right)\] and vertical component \[Tcos\left( \theta \right)\].
The horizontal component of the tension experience centripetal force since the conical pendulum travels in a circular path of radius r with a constant velocity v
$T\sin \theta = \dfrac{{m{v^2}}}{r}$
We can rearrange the above equation as
$T = \dfrac{{m{v^2}}}{{r\sin \theta }}{\text{ }} \to {\text{1}}$
Since there is no acceleration in the vertical direction, the vertical component is equal and opposite to the weight of the mass so, the vertical component of tension is
$T\cos \theta = mg$
We can rearrange the above equation as
$T = \dfrac{{mg}}{{\cos \theta }}{\text{ }} \to 2$
Equating 1 and 2
$ \Rightarrow \dfrac{{m{v^2}}}{{r\sin \theta }} = \dfrac{{mg}}{{\cos \theta }}$
\[ \Rightarrow {v^2} = \dfrac{{gr\sin \theta }}{{\cos \theta }}\]
\[ \Rightarrow {v^2} = gr\tan \theta {\text{ }} \to 3\]
Given that,
The radius of the circular path, $r = 0.4m$
The conical pendulum makes an angle $\theta = 45^\circ $
The acceleration due to gravity, $g = 9.8{\text{m/s}}$
Substitute these given values in the equation 3
\[ \Rightarrow {v^2} = gr\tan \theta \]
\[ \Rightarrow {v^2} = 9.8 \times 0.4 \times \tan 45^\circ \]
\[ \Rightarrow {v^2} = 9.8 \times 0.4 \times 1\]
\[ \Rightarrow {v^2} = 3.9 = 4{\text{m/s}}\]
\[ \Rightarrow v = \sqrt 4 {\text{m/s}}\]
\[ \Rightarrow v = 2{\text{m/s}}\]
The speed of the pendulum is \[2{\text{m/s}}\]
Hence the correct answer is option D) \[2{\text{m/s}}\]
Note A conical pendulum is similar to an ordinary simple pendulum, instead of swinging back and forth, the mass of a conical pendulum moves in a circle with the string tracing out a cone.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
