
A clock purchased in \[1942\] loses $1$ min in $1$ day. Its time period must have become:
A) Extremely small
B) Extremely large
C) Shorter
D) Longer
Answer
232.8k+ views
Hint: Whenever a clock is running slower than its normal speed, it is said that the clock is losing time. An ideal clock should lose $12$ hours, to give accurate time. But if a clock is running faster than its normal speed, it is said that the clock has gained time. An ideal clock should gain $12$ hours, to give accurate time.
Complete solution:
It is already clear that the clock will lose time if it runs slow. So, this means that the time period of the clock must be longer than $24$ hours. This is why it is taking longer than actual. Also the length of the pendulum clock changes with change in the temperature. If the temperature increases, then the length of the rod will increase as it will expand. So the time period of the clock will increase and the clock will lose time.
If the clock is purchased in $1942$ and loses $1$min in $1$ day, then its time period must have become longer.
Option D is the right answer.
Note: It is important to remember that the length of a pendulum increases with temperature. The length of the pendulum changes due to linear expansion. Linear expansion means the change in one dimension that means length of the object due to the heat of the atmosphere. Due to this heat the particles of the object gain energy and start moving fast and the volume of the object increases. This is also known as thermal expansion of the object.
Complete solution:
It is already clear that the clock will lose time if it runs slow. So, this means that the time period of the clock must be longer than $24$ hours. This is why it is taking longer than actual. Also the length of the pendulum clock changes with change in the temperature. If the temperature increases, then the length of the rod will increase as it will expand. So the time period of the clock will increase and the clock will lose time.
If the clock is purchased in $1942$ and loses $1$min in $1$ day, then its time period must have become longer.
Option D is the right answer.
Note: It is important to remember that the length of a pendulum increases with temperature. The length of the pendulum changes due to linear expansion. Linear expansion means the change in one dimension that means length of the object due to the heat of the atmosphere. Due to this heat the particles of the object gain energy and start moving fast and the volume of the object increases. This is also known as thermal expansion of the object.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Uniform Acceleration in Physics

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

