
A certain freezing process requires that room temperature be lowered from ${40^ \circ }C$ at the rate of ${5^ \circ }C$ every hour. What will be the room temperature 10 hours after the process begins?
Answer
124.2k+ views
Hint: In this question use the given information to identify the given values and also remember that \[\dfrac{{dT}}{{dt}} = -{5^ \circ }C\] which means every hour temperature will decrease by ${5^ \circ }C$, use this information to approach the solution.
Complete step-by-step solution:
According to the given information we know a room where the present temperature is ${40^ \circ }C$
So, for freezing process we have to lower the room temperature and the rate at which the room temperature is lowered every hour is ${5^ \circ }C$ i.e. \[\dfrac{{dT}}{{dt}} = -{5^ \circ }C\]
To find what will be the room temperature 10 hours after the process begins
Present temperature = ${40^ \circ }C$
Since the change in rate of temperature is \[\dfrac{{dT}}{{dt}} = -{5^ \circ }C\] which means in each hour temperature will drop by ${5^ \circ }C$
Therefore, after 10 hours the temperature will be drop by $-{5^ \circ }C \times 10$
Change in temperature after 10 hours = ${50^ \circ }C$
Therefore, temperature after 10 hours= ${40^ \circ }C - {50^ \circ }C$
So, the room temperature 10 hours after the process starts = $ - {10^ \circ }C$.
Note: The trick behind these types of questions is first to identify the initial temperature and the rate of change in temperature then as we knew that we require the change in temperature after 10 hours so it is a basic concept that if in an hour the change in temperature is ${5^ \circ }C$ so after 10 hours the change in temperature will be the multiplication of rate of change in temperature per hour and the time after finding the change in temperature after 10 hours we can subtract the initial temperature with the change in temperature to find the final temperature required.
Complete step-by-step solution:
According to the given information we know a room where the present temperature is ${40^ \circ }C$
So, for freezing process we have to lower the room temperature and the rate at which the room temperature is lowered every hour is ${5^ \circ }C$ i.e. \[\dfrac{{dT}}{{dt}} = -{5^ \circ }C\]
To find what will be the room temperature 10 hours after the process begins
Present temperature = ${40^ \circ }C$
Since the change in rate of temperature is \[\dfrac{{dT}}{{dt}} = -{5^ \circ }C\] which means in each hour temperature will drop by ${5^ \circ }C$
Therefore, after 10 hours the temperature will be drop by $-{5^ \circ }C \times 10$
Change in temperature after 10 hours = ${50^ \circ }C$
Therefore, temperature after 10 hours= ${40^ \circ }C - {50^ \circ }C$
So, the room temperature 10 hours after the process starts = $ - {10^ \circ }C$.
Note: The trick behind these types of questions is first to identify the initial temperature and the rate of change in temperature then as we knew that we require the change in temperature after 10 hours so it is a basic concept that if in an hour the change in temperature is ${5^ \circ }C$ so after 10 hours the change in temperature will be the multiplication of rate of change in temperature per hour and the time after finding the change in temperature after 10 hours we can subtract the initial temperature with the change in temperature to find the final temperature required.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Physics Average Value and RMS Value JEE Main 2025

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
