
A Carnot engine shows efficiency 40% on the energy at 500 K. To increase the efficiency to 50 at what temperature it should take energy.
A) 400 K
B) 700 K
C) 600 K
D) 800 K
Answer
232.8k+ views
Hint: According to Kelvin-Planck statement for an engine to produce work the engine should come in contact with a source and also should come in contact with a sink temperature and accordingly the Carnot engine when comes in contact with source and sink temperature it produces work.
Formula Used: The formula of the efficiency of an engine is given by,
$ \Rightarrow \eta = \left( {1 - \dfrac{{{T_2}}}{{{T_1}}}} \right) \times 100$
Where $\eta $ is the efficiency in percentage the temperature of source is ${T_1}$ and temperature of ${T_2}$ is the temperature of sink.
Complete step by step answer:
It is given in the problem that a Camot engine shows efficiency 40% on the energy at 500 K and we need to find the temperature of source if the efficiency is 50%.
Let us first of all calculate the temperature of sink i.e. ${T_2}$.
The efficiency of the engine is given as 40% and the source temperature is 500 K, therefore.
$ \Rightarrow \eta = \left( {1 - \dfrac{{{T_2}}}{{{T_1}}}} \right) \times 100$
$ \Rightarrow 40 = \left( {1 - \dfrac{{{T_2}}}{{500}}} \right) \times 100$
$ \Rightarrow 0 \cdot 40 = \left( {1 - \dfrac{{{T_2}}}{{500}}} \right)$
$ \Rightarrow 0 \cdot 40 = \left( {\dfrac{{500 - {T_2}}}{{500}}} \right)$
$ \Rightarrow \left( {0 \cdot 40 \times 500} \right) = 500 - {T_2}$
$ \Rightarrow {T_2} = 500 - \left( {0 \cdot 40 \times 500} \right)$
$ \Rightarrow {T_2} = 500 - 200$
$ \Rightarrow {T_2} = 300k$
The sink temperature is 300 k.
Now if the efficiency is 50 % let us then calculate the temperature of the source.
The formula of the efficiency of an engine is given by,
$ \Rightarrow \eta = \left( {1 - \dfrac{{{T_2}}}{{{T_1}}}} \right) \times 100$
Where $\eta $ is the efficiency in percentage the temperature of source is ${T_1}$ and temperature of ${T_2}$ is the temperature of sink.
As the efficiency is 50 % and the sink temperature is 300 k.
$ \Rightarrow \eta = \left( {1 - \dfrac{{{T_2}}}{{{T_1}}}} \right) \times 100$
\[ \Rightarrow 50 = \left( {1 - \dfrac{{300}}{{{T_1}}}} \right) \times 100\]
\[ \Rightarrow 0 \cdot 50 = \left( {1 - \dfrac{{300}}{{{T_1}}}} \right)\]
\[ \Rightarrow 0 \cdot 50 = \left( {\dfrac{{{T_1} - 300}}{{{T_1}}}} \right)\]
\[ \Rightarrow 0 \cdot 50{T_1} = {T_1} - 300\]
\[ \Rightarrow 0 \cdot 50{T_1} = 300\]
\[ \Rightarrow {T_1} = \left( {\dfrac{{300}}{{0 \cdot 50}}} \right)\]
\[ \Rightarrow {T_1} = 600k\]
The source temperature for the efficiency to be 50% is \[{T_1} = 600k\].
The correct answer for this problem is option C.
Note: The work produced can be increased by increasing the source temperature and keeping the sink temperature same or the work can also be increased if we decrease the sink temperature these are the two ways by which the efficiency can be increased and also both of the conditions can be applied along simultaneously to achieve the increase in work output and the efficiency of the engine.
Formula Used: The formula of the efficiency of an engine is given by,
$ \Rightarrow \eta = \left( {1 - \dfrac{{{T_2}}}{{{T_1}}}} \right) \times 100$
Where $\eta $ is the efficiency in percentage the temperature of source is ${T_1}$ and temperature of ${T_2}$ is the temperature of sink.
Complete step by step answer:
It is given in the problem that a Camot engine shows efficiency 40% on the energy at 500 K and we need to find the temperature of source if the efficiency is 50%.
Let us first of all calculate the temperature of sink i.e. ${T_2}$.
The efficiency of the engine is given as 40% and the source temperature is 500 K, therefore.
$ \Rightarrow \eta = \left( {1 - \dfrac{{{T_2}}}{{{T_1}}}} \right) \times 100$
$ \Rightarrow 40 = \left( {1 - \dfrac{{{T_2}}}{{500}}} \right) \times 100$
$ \Rightarrow 0 \cdot 40 = \left( {1 - \dfrac{{{T_2}}}{{500}}} \right)$
$ \Rightarrow 0 \cdot 40 = \left( {\dfrac{{500 - {T_2}}}{{500}}} \right)$
$ \Rightarrow \left( {0 \cdot 40 \times 500} \right) = 500 - {T_2}$
$ \Rightarrow {T_2} = 500 - \left( {0 \cdot 40 \times 500} \right)$
$ \Rightarrow {T_2} = 500 - 200$
$ \Rightarrow {T_2} = 300k$
The sink temperature is 300 k.
Now if the efficiency is 50 % let us then calculate the temperature of the source.
The formula of the efficiency of an engine is given by,
$ \Rightarrow \eta = \left( {1 - \dfrac{{{T_2}}}{{{T_1}}}} \right) \times 100$
Where $\eta $ is the efficiency in percentage the temperature of source is ${T_1}$ and temperature of ${T_2}$ is the temperature of sink.
As the efficiency is 50 % and the sink temperature is 300 k.
$ \Rightarrow \eta = \left( {1 - \dfrac{{{T_2}}}{{{T_1}}}} \right) \times 100$
\[ \Rightarrow 50 = \left( {1 - \dfrac{{300}}{{{T_1}}}} \right) \times 100\]
\[ \Rightarrow 0 \cdot 50 = \left( {1 - \dfrac{{300}}{{{T_1}}}} \right)\]
\[ \Rightarrow 0 \cdot 50 = \left( {\dfrac{{{T_1} - 300}}{{{T_1}}}} \right)\]
\[ \Rightarrow 0 \cdot 50{T_1} = {T_1} - 300\]
\[ \Rightarrow 0 \cdot 50{T_1} = 300\]
\[ \Rightarrow {T_1} = \left( {\dfrac{{300}}{{0 \cdot 50}}} \right)\]
\[ \Rightarrow {T_1} = 600k\]
The source temperature for the efficiency to be 50% is \[{T_1} = 600k\].
The correct answer for this problem is option C.
Note: The work produced can be increased by increasing the source temperature and keeping the sink temperature same or the work can also be increased if we decrease the sink temperature these are the two ways by which the efficiency can be increased and also both of the conditions can be applied along simultaneously to achieve the increase in work output and the efficiency of the engine.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

