
A car moving with a speed of $50km{h^{ - 1}}$ can be stopped by brakes after at least $6m$. If the same car is moving at a speed of $100km{h^{ - 1}}$ the minimum stopping distance is
A) 6m
B) 12m
C) 18m
D) 24m
Answer
161.1k+ views
Hint: The third equation of motion provides the final velocity of an object under uniform acceleration given the initial velocity and the distance traveled. By using the third equation of motion formula, apply the given values to find the minimum distance. When acceleration is constant, Velocity is proportional to time and Displacement is proportional to the square of time and Displacement is proportional to the square of the velocity.
Formula Used:
We will be using the formula of the third equation of motion i.e.,${v^2} - {u^2} = 2as$.
Complete step by step answer:
Given: The speed of the car $50km{h^{ - 1}}$
When brakes are applied final velocity becomes zero.
So we apply the third equation of motion
${v^2} - {u^2} = 2as$
Where $u$ is the initial speed of the car $50km{h^{ - 1}}$
$v$ is the final speed of the car that is zero
$a$ is the acceleration
\[s\] is the distance that is $6m$
We know that, Distance $ = $average velocity $ \times $Time
Therefore, for constant acceleration
Average velocity$ = $\[\dfrac{{{\text{final velocity}} \times {\text{initial velocity}}}}{2}\]
Average velocity $ = \dfrac{{(v + u)}}{2}$
Hence Distance $s = \dfrac{{({v^2} - {u^2})}}{{2a}}$
Applying the value in the third equation of motion,
${v^2} - 50 = 2a \times 6$
The final velocity of the car is $v = 0$
Substituting the velocity of the car $v = 0$, and we can calculate the acceleration a is given by
\[a = \dfrac{{ - 2500}}{{2 \times 6}}\]
$a = \dfrac{{ - 2500}}{{12}}$
To find the minimum stopping distance
${v^2} = 2as + {u^2}$
${100^2} = 2 \times (\dfrac{{ - 2500}}{{12}})s$
$s = 10000 \times \dfrac{6}{{2500}}$
$s = 24m$
Therefore the distance s is calculated
Hence the minimum stopping distance of the car is option (D), $24m$.
Notes: Dynamics and Kinematics are the two main descriptions of motion. Equation of motion can be used to derive the components like acceleration, velocity, and time. The relation between the components such as displacement, velocity, acceleration, speed, time, and distance are called Equations of motion. The third equation of motion is also called Laws of constant acceleration.
Formula Used:
We will be using the formula of the third equation of motion i.e.,${v^2} - {u^2} = 2as$.
Complete step by step answer:
Given: The speed of the car $50km{h^{ - 1}}$
When brakes are applied final velocity becomes zero.
So we apply the third equation of motion
${v^2} - {u^2} = 2as$
Where $u$ is the initial speed of the car $50km{h^{ - 1}}$
$v$ is the final speed of the car that is zero
$a$ is the acceleration
\[s\] is the distance that is $6m$
We know that, Distance $ = $average velocity $ \times $Time
Therefore, for constant acceleration
Average velocity$ = $\[\dfrac{{{\text{final velocity}} \times {\text{initial velocity}}}}{2}\]
Average velocity $ = \dfrac{{(v + u)}}{2}$
Hence Distance $s = \dfrac{{({v^2} - {u^2})}}{{2a}}$
Applying the value in the third equation of motion,
${v^2} - 50 = 2a \times 6$
The final velocity of the car is $v = 0$
Substituting the velocity of the car $v = 0$, and we can calculate the acceleration a is given by
\[a = \dfrac{{ - 2500}}{{2 \times 6}}\]
$a = \dfrac{{ - 2500}}{{12}}$
To find the minimum stopping distance
${v^2} = 2as + {u^2}$
${100^2} = 2 \times (\dfrac{{ - 2500}}{{12}})s$
$s = 10000 \times \dfrac{6}{{2500}}$
$s = 24m$
Therefore the distance s is calculated
Hence the minimum stopping distance of the car is option (D), $24m$.
Notes: Dynamics and Kinematics are the two main descriptions of motion. Equation of motion can be used to derive the components like acceleration, velocity, and time. The relation between the components such as displacement, velocity, acceleration, speed, time, and distance are called Equations of motion. The third equation of motion is also called Laws of constant acceleration.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Class 11 JEE Main Physics Mock Test 2025

Differentiate between audible and inaudible sounds class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
