
A car is moving with speed 30 m/s on a circular path of radius 500m. Its speed is increasing at the rate of $2 m/{sec^2}$. What is the acceleration of the car?
A) 9.8 m/sec$^2$
B) 1.8 m/sec$^2$
C) 2 m/sec$^2$
D) 2.7 m/sec$^2$
Answer
232.8k+ views
Hint: The acceleration of an object moving on a circular path is the vector sum of tangential acceleration and centripetal acceleration. The acceleration in circular motion, which changes the magnitude of velocity, is the tangential acceleration.
Complete step by step solution:
The radius of the circular path along which the car is moving is 500 m. Its velocity is 30 m/s. Since the car is moving on a circular path, it has two components of acceleration. One is tangential which acts tangent to the circular path and another is centripetal which acts towards the center and allows the car to move on a circular path. It is given that the speed is increasing at the rate 0f 2 m/sec$^2$. This is the tangential acceleration of the car. Let us denote it as a$_t$.
${a_t} = 2$ m/sec$^2$
The centripetal component of acceleration can be found by using the following formula,
${a_c} = \dfrac{{{v^2}}}{r}$ …equation (1)
On substituting the values of the velocity and the radius of circular path in equation (1), we obtain,
${a_c} = \dfrac{{{{\left( {30} \right)}^2}}}{{500}} = \dfrac{{900}}{{500}} = 1.8$ m/sec$^2$
Now, the total acceleration can be found by taking the vector sum of both the components of acceleration. The tangential and centripetal acceleration are at right angles to each other because the tangential acceleration is along the tangent to the circular path and centripetal acceleration is along the radius. Therefore the cosine of the angle between the two components of acceleration is 0. The total acceleration is as follows,
$a = \sqrt {a_t^2 + a_c^2} = \sqrt {{{\left( 2 \right)}^2} + {{\left( {1.8} \right)}^2}} = \sqrt {7.24} = 2.7$ m/sec$^2$
Hence, the total acceleration of the car is 2.7 m/sec$^2$.
Therefore, the correct answer is option (D).
Note: When the magnitude of velocity is not changing while moving on a circular path, its tangential acceleration is zero. Since the direction of velocity is changing at every point, the acceleration is never non-zero, even with constant magnitude.
Complete step by step solution:
The radius of the circular path along which the car is moving is 500 m. Its velocity is 30 m/s. Since the car is moving on a circular path, it has two components of acceleration. One is tangential which acts tangent to the circular path and another is centripetal which acts towards the center and allows the car to move on a circular path. It is given that the speed is increasing at the rate 0f 2 m/sec$^2$. This is the tangential acceleration of the car. Let us denote it as a$_t$.
${a_t} = 2$ m/sec$^2$
The centripetal component of acceleration can be found by using the following formula,
${a_c} = \dfrac{{{v^2}}}{r}$ …equation (1)
On substituting the values of the velocity and the radius of circular path in equation (1), we obtain,
${a_c} = \dfrac{{{{\left( {30} \right)}^2}}}{{500}} = \dfrac{{900}}{{500}} = 1.8$ m/sec$^2$
Now, the total acceleration can be found by taking the vector sum of both the components of acceleration. The tangential and centripetal acceleration are at right angles to each other because the tangential acceleration is along the tangent to the circular path and centripetal acceleration is along the radius. Therefore the cosine of the angle between the two components of acceleration is 0. The total acceleration is as follows,
$a = \sqrt {a_t^2 + a_c^2} = \sqrt {{{\left( 2 \right)}^2} + {{\left( {1.8} \right)}^2}} = \sqrt {7.24} = 2.7$ m/sec$^2$
Hence, the total acceleration of the car is 2.7 m/sec$^2$.
Therefore, the correct answer is option (D).
Note: When the magnitude of velocity is not changing while moving on a circular path, its tangential acceleration is zero. Since the direction of velocity is changing at every point, the acceleration is never non-zero, even with constant magnitude.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

