
A car going at a speed of ${\text{7m}}{{\text{s}}^{{\text{ - 1}}}}$. Can be stopped by applying brakes in $\alpha$ shortest distance of $10$m. Show that the total friction force opposing the motion, when brakes are applied. Is $1/{4^{th}}$ of the weight of the car. $\left( {{\text{g = }}\;{\text{9}}{\text{.8m}}{{\text{s}}^{{\text{ - 1}}}}} \right)$
Answer
219.9k+ views
Hint: By seeing the question we can say that if the car stopped its final velocity will become $0$, Hence by given data we can calculate acceleration. Also the mass of the car is not given in the question but we know that force is mass multiplied by product. From force we can find mass.
Formula used:
$\left( {\text{i}} \right)\;{{\text{V}}^{\text{2}}}\;{\text{ = }}{{\text{u}}^{\text{2}}}{\text{ + 2as}}$
\[V\] is final velocity
\[u\] is initial velocity
\[a\] is acceleration
$\left( {{\text{ii}}} \right)$ Force ${\text{ = }}$ ${{Mass \times acceleration}}$
${\text{F = }}\;{{m \times a}}$.
Complete step by step answer:
We have given, a car is at speed ${\text{7m}}{{\text{s}}^{{\text{ - 1}}}}$ moving and suddenly it stopped by applying brakes so its final velocity become $0.$ and distance travelled by it is ${\text{10m}}$. We have to show the total resistance force (functional force) is $\dfrac{1}{4}$ times the weight of the car.
Data given,
${\text{u = }}\;{\text{7m/s}}\;{\text{,V = 0,}}\;{\text{s = 10m,}}\;{\text{& }}\;{\text{acceleration = }}\;{\text{?}}$
So,
By using ${{\text{3}}^{{\text{rd}}}}$ equation of Motion
${\text{V = }}\;{{\text{u}}^{\text{2}}}{\text{ + 2as}}$
So, ${\text{a = }}\;\dfrac{{{{\text{V}}^{{2}}}{\text{ - }}{{\text{u}}^{\text{2}}}}}{{{\text{2s}}}}$
${\text{a}}\;{\text{ = }}\;\dfrac{{{{\left( {\text{0}} \right)}^{\text{2}}}{\text{ - }}{{\left( {\text{7}} \right)}^{\text{2}}}}}{{{{2 \times 10}}}}$
$\Rightarrow {\text{a}}\;{\text{ = }}\;\dfrac{{{\text{ - 49}}}}{{{\text{20}}\;}}\;\; \Rightarrow {\text{ - 2}}{\text{.45m/}}{{\text{s}}^{\text{2}}}$
Now,
$2.45$ can also be written as $a = \;\dfrac{{49}}{{20}}$
$ \Rightarrow \; a = \dfrac{{49 \times 2}}{{20 \times 2}}\; = \;\dfrac{{98}}{{40}}\; = \;\dfrac{{9.8}}{4}\; = \dfrac{g}{4}\;\left( {\because g = \,9.8} \right)$
Now, the resistance or frictional force ${\text{ = }}\;{\text{ma}}$
So, the total frictional force opposing the motion in $\dfrac{1}{4}$ times the weight of car R(functional force) $ = \;\dfrac{1}{4}$ weight of car.
Note: In order to solve this question, we need to count the acceleration in terms of ${\text{g}}$ as you have seen in the solution. Negative sign shows that the motion is in the opposite direction with the frictional force or resistance force. It must be noted that frictional force is always in the opposite direction of the motion.
Formula used:
$\left( {\text{i}} \right)\;{{\text{V}}^{\text{2}}}\;{\text{ = }}{{\text{u}}^{\text{2}}}{\text{ + 2as}}$
\[V\] is final velocity
\[u\] is initial velocity
\[a\] is acceleration
$\left( {{\text{ii}}} \right)$ Force ${\text{ = }}$ ${{Mass \times acceleration}}$
${\text{F = }}\;{{m \times a}}$.
Complete step by step answer:
We have given, a car is at speed ${\text{7m}}{{\text{s}}^{{\text{ - 1}}}}$ moving and suddenly it stopped by applying brakes so its final velocity become $0.$ and distance travelled by it is ${\text{10m}}$. We have to show the total resistance force (functional force) is $\dfrac{1}{4}$ times the weight of the car.
Data given,
${\text{u = }}\;{\text{7m/s}}\;{\text{,V = 0,}}\;{\text{s = 10m,}}\;{\text{& }}\;{\text{acceleration = }}\;{\text{?}}$
So,
By using ${{\text{3}}^{{\text{rd}}}}$ equation of Motion
${\text{V = }}\;{{\text{u}}^{\text{2}}}{\text{ + 2as}}$
So, ${\text{a = }}\;\dfrac{{{{\text{V}}^{{2}}}{\text{ - }}{{\text{u}}^{\text{2}}}}}{{{\text{2s}}}}$
${\text{a}}\;{\text{ = }}\;\dfrac{{{{\left( {\text{0}} \right)}^{\text{2}}}{\text{ - }}{{\left( {\text{7}} \right)}^{\text{2}}}}}{{{{2 \times 10}}}}$
$\Rightarrow {\text{a}}\;{\text{ = }}\;\dfrac{{{\text{ - 49}}}}{{{\text{20}}\;}}\;\; \Rightarrow {\text{ - 2}}{\text{.45m/}}{{\text{s}}^{\text{2}}}$
Now,
$2.45$ can also be written as $a = \;\dfrac{{49}}{{20}}$
$ \Rightarrow \; a = \dfrac{{49 \times 2}}{{20 \times 2}}\; = \;\dfrac{{98}}{{40}}\; = \;\dfrac{{9.8}}{4}\; = \dfrac{g}{4}\;\left( {\because g = \,9.8} \right)$
Now, the resistance or frictional force ${\text{ = }}\;{\text{ma}}$
So, the total frictional force opposing the motion in $\dfrac{1}{4}$ times the weight of car R(functional force) $ = \;\dfrac{1}{4}$ weight of car.
Note: In order to solve this question, we need to count the acceleration in terms of ${\text{g}}$ as you have seen in the solution. Negative sign shows that the motion is in the opposite direction with the frictional force or resistance force. It must be noted that frictional force is always in the opposite direction of the motion.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

