A car going at a speed of ${\text{7m}}{{\text{s}}^{{\text{ - 1}}}}$. Can be stopped by applying brakes in $\alpha$ shortest distance of $10$m. Show that the total friction force opposing the motion, when brakes are applied. Is $1/{4^{th}}$ of the weight of the car. $\left( {{\text{g = }}\;{\text{9}}{\text{.8m}}{{\text{s}}^{{\text{ - 1}}}}} \right)$
Answer
Verified
117k+ views
Hint: By seeing the question we can say that if the car stopped its final velocity will become $0$, Hence by given data we can calculate acceleration. Also the mass of the car is not given in the question but we know that force is mass multiplied by product. From force we can find mass.
Formula used:
$\left( {\text{i}} \right)\;{{\text{V}}^{\text{2}}}\;{\text{ = }}{{\text{u}}^{\text{2}}}{\text{ + 2as}}$
\[V\] is final velocity
\[u\] is initial velocity
\[a\] is acceleration
$\left( {{\text{ii}}} \right)$ Force ${\text{ = }}$ ${{Mass \times acceleration}}$
${\text{F = }}\;{{m \times a}}$.
Complete step by step answer:
We have given, a car is at speed ${\text{7m}}{{\text{s}}^{{\text{ - 1}}}}$ moving and suddenly it stopped by applying brakes so its final velocity become $0.$ and distance travelled by it is ${\text{10m}}$. We have to show the total resistance force (functional force) is $\dfrac{1}{4}$ times the weight of the car.
Data given,
${\text{u = }}\;{\text{7m/s}}\;{\text{,V = 0,}}\;{\text{s = 10m,}}\;{\text{& }}\;{\text{acceleration = }}\;{\text{?}}$
So,
By using ${{\text{3}}^{{\text{rd}}}}$ equation of Motion
${\text{V = }}\;{{\text{u}}^{\text{2}}}{\text{ + 2as}}$
So, ${\text{a = }}\;\dfrac{{{{\text{V}}^{{2}}}{\text{ - }}{{\text{u}}^{\text{2}}}}}{{{\text{2s}}}}$
${\text{a}}\;{\text{ = }}\;\dfrac{{{{\left( {\text{0}} \right)}^{\text{2}}}{\text{ - }}{{\left( {\text{7}} \right)}^{\text{2}}}}}{{{{2 \times 10}}}}$
$\Rightarrow {\text{a}}\;{\text{ = }}\;\dfrac{{{\text{ - 49}}}}{{{\text{20}}\;}}\;\; \Rightarrow {\text{ - 2}}{\text{.45m/}}{{\text{s}}^{\text{2}}}$
Now,
$2.45$ can also be written as $a = \;\dfrac{{49}}{{20}}$
$ \Rightarrow \; a = \dfrac{{49 \times 2}}{{20 \times 2}}\; = \;\dfrac{{98}}{{40}}\; = \;\dfrac{{9.8}}{4}\; = \dfrac{g}{4}\;\left( {\because g = \,9.8} \right)$
Now, the resistance or frictional force ${\text{ = }}\;{\text{ma}}$
So, the total frictional force opposing the motion in $\dfrac{1}{4}$ times the weight of car R(functional force) $ = \;\dfrac{1}{4}$ weight of car.
Note: In order to solve this question, we need to count the acceleration in terms of ${\text{g}}$ as you have seen in the solution. Negative sign shows that the motion is in the opposite direction with the frictional force or resistance force. It must be noted that frictional force is always in the opposite direction of the motion.
Formula used:
$\left( {\text{i}} \right)\;{{\text{V}}^{\text{2}}}\;{\text{ = }}{{\text{u}}^{\text{2}}}{\text{ + 2as}}$
\[V\] is final velocity
\[u\] is initial velocity
\[a\] is acceleration
$\left( {{\text{ii}}} \right)$ Force ${\text{ = }}$ ${{Mass \times acceleration}}$
${\text{F = }}\;{{m \times a}}$.
Complete step by step answer:
We have given, a car is at speed ${\text{7m}}{{\text{s}}^{{\text{ - 1}}}}$ moving and suddenly it stopped by applying brakes so its final velocity become $0.$ and distance travelled by it is ${\text{10m}}$. We have to show the total resistance force (functional force) is $\dfrac{1}{4}$ times the weight of the car.
Data given,
${\text{u = }}\;{\text{7m/s}}\;{\text{,V = 0,}}\;{\text{s = 10m,}}\;{\text{& }}\;{\text{acceleration = }}\;{\text{?}}$
So,
By using ${{\text{3}}^{{\text{rd}}}}$ equation of Motion
${\text{V = }}\;{{\text{u}}^{\text{2}}}{\text{ + 2as}}$
So, ${\text{a = }}\;\dfrac{{{{\text{V}}^{{2}}}{\text{ - }}{{\text{u}}^{\text{2}}}}}{{{\text{2s}}}}$
${\text{a}}\;{\text{ = }}\;\dfrac{{{{\left( {\text{0}} \right)}^{\text{2}}}{\text{ - }}{{\left( {\text{7}} \right)}^{\text{2}}}}}{{{{2 \times 10}}}}$
$\Rightarrow {\text{a}}\;{\text{ = }}\;\dfrac{{{\text{ - 49}}}}{{{\text{20}}\;}}\;\; \Rightarrow {\text{ - 2}}{\text{.45m/}}{{\text{s}}^{\text{2}}}$
Now,
$2.45$ can also be written as $a = \;\dfrac{{49}}{{20}}$
$ \Rightarrow \; a = \dfrac{{49 \times 2}}{{20 \times 2}}\; = \;\dfrac{{98}}{{40}}\; = \;\dfrac{{9.8}}{4}\; = \dfrac{g}{4}\;\left( {\because g = \,9.8} \right)$
Now, the resistance or frictional force ${\text{ = }}\;{\text{ma}}$
So, the total frictional force opposing the motion in $\dfrac{1}{4}$ times the weight of car R(functional force) $ = \;\dfrac{1}{4}$ weight of car.
Note: In order to solve this question, we need to count the acceleration in terms of ${\text{g}}$ as you have seen in the solution. Negative sign shows that the motion is in the opposite direction with the frictional force or resistance force. It must be noted that frictional force is always in the opposite direction of the motion.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
Charging and Discharging of Capacitor
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Which of the following is the smallest unit of length class 11 physics JEE_Main
JEE Main 2025 Maths Online - FREE Mock Test Series
JEE Main 2024 Physics Question Paper with Solutions 27 January Shift 1
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
Ideal and Non-Ideal Solutions Raoult's Law - JEE