
A bus travels the first one third distance at a speed of $10km{h^{ - 1}}$, the next one third distance at a speed of $20km{h^{ - 1}}$ and the next one third distance at a speed of $30km{h^{ - 1}}$. Find the average speed of the bus in the whole journey:
A) $20km{h^{ - 1}}$.
B) $\dfrac{{50}}{{11}}km{h^{ - 1}}$.
C) $\dfrac{{180}}{{11}}km{h^{ - 1}}$.
D) $30km{h^{ - 1}}$.
Answer
232.8k+ views
Hint: The average speed is the speed of the body with which if the body have moved instead of three different speeds then it would have taken the exact same time that the body takes with different speeds for different intervals of time. The average speed is defined as the ratio of total distance covered by total time taken.
Formula used:
The formula of the speed is given by,
$ \Rightarrow s = \dfrac{d}{t}$
Where speed is s, the distance is d and the time taken is t.
The formula of the average speed is given by,
$ \Rightarrow {s_{avg.}} = \dfrac{{{d_{total}}}}{{{t_{total}}}}$
Where average speed is ${s_{avg.}}$, the total distance is ${d_{total}}$ and the total time taken is ${d_{total}}$.
Complete step by step solution:
It is given in the problem that a bus travels the first one third distance at a speed of $10km{h^{ - 1}}$, the next one third distance at a speed of $20km{h^{ - 1}}$ and the next one third distance at a speed of $30km{h^{ - 1}}$ and we need to find the average speed of the bus for the whole journey.
For the first journey the bus covers a distance one third of the whole journey and the speed is of $10km{h^{ - 1}}$, let the total distance be d km then the distance for the first journey is $\dfrac{d}{3}$.
The formula of the speed is given by,
$ \Rightarrow s = \dfrac{d}{t}$
Where speed is s, the distance is d and the time taken is t.
The time taken is equal to,
$ \Rightarrow 10 = \dfrac{{\dfrac{d}{3}}}{{{t_1}}}$
$ \Rightarrow {t_1} = \dfrac{d}{{30}}hr.$………eq. (1)
For the second journey we have, one third distance at a speed of $20km{h^{ - 1}}$.
The time taken by the bus will be,
$ \Rightarrow 20 = \dfrac{{\dfrac{d}{3}}}{{{t_2}}}$
$ \Rightarrow {t_2} = \dfrac{d}{{60}}hr.$………eq. (2)
For the third journey we have, one third distance at a speed of $30km{h^{ - 1}}$.
The time taken by the bus will be,
$ \Rightarrow 30 = \dfrac{{\dfrac{d}{3}}}{{{t_2}}}$
$ \Rightarrow {t_2} = \dfrac{d}{{90}}hr.$………eq. (3)
The total time taken will be equal to,
$ \Rightarrow {t_{total}} = {t_1} + {t_2} + {t_3}$
Replacing the equations (1), (2) and (3) in the above relation we get,
$ \Rightarrow {t_{total}} = {t_1} + {t_2} + {t_3}$
$ \Rightarrow {t_{total}} = \dfrac{d}{{30}} + \dfrac{d}{{60}} + \dfrac{d}{{90}}$
$ \Rightarrow {t_{total}} = \dfrac{{6d + 3d + 2d}}{{180}}$
$ \Rightarrow {t_{total}} = \dfrac{{11d}}{{180}}$.
The total distance is $d$.
The formula of the average speed is given by,
$ \Rightarrow {s_{avg.}} = \dfrac{{{d_{total}}}}{{{t_{total}}}}$
Where average speed is ${s_{avg.}}$, the total distance is ${d_{total}}$ and the total time taken is ${d_{total}}$.
$ \Rightarrow {s_{avg.}} = \dfrac{{{d_{total}}}}{{{t_{total}}}}$
$ \Rightarrow {s_{avg.}} = \dfrac{d}{{\dfrac{{11d}}{{180}}}}$
$ \Rightarrow {s_{avg.}} = \dfrac{1}{{\dfrac{{11}}{{180}}}}$
$ \Rightarrow {s_{avg.}} = \dfrac{{180}}{{11}}km{h^{ - 1}}$.
The average speed of the bus is equal to ${s_{avg.}} = \dfrac{{180}}{{11}}km{h^{ - 1}}$. The correct answer is option C.
Note: It is advised to the students to understand and remember the formula of the average speed as it is very helpful in solving problems like these. The formula of the speed can be used to calculate the total time taken.
Formula used:
The formula of the speed is given by,
$ \Rightarrow s = \dfrac{d}{t}$
Where speed is s, the distance is d and the time taken is t.
The formula of the average speed is given by,
$ \Rightarrow {s_{avg.}} = \dfrac{{{d_{total}}}}{{{t_{total}}}}$
Where average speed is ${s_{avg.}}$, the total distance is ${d_{total}}$ and the total time taken is ${d_{total}}$.
Complete step by step solution:
It is given in the problem that a bus travels the first one third distance at a speed of $10km{h^{ - 1}}$, the next one third distance at a speed of $20km{h^{ - 1}}$ and the next one third distance at a speed of $30km{h^{ - 1}}$ and we need to find the average speed of the bus for the whole journey.
For the first journey the bus covers a distance one third of the whole journey and the speed is of $10km{h^{ - 1}}$, let the total distance be d km then the distance for the first journey is $\dfrac{d}{3}$.
The formula of the speed is given by,
$ \Rightarrow s = \dfrac{d}{t}$
Where speed is s, the distance is d and the time taken is t.
The time taken is equal to,
$ \Rightarrow 10 = \dfrac{{\dfrac{d}{3}}}{{{t_1}}}$
$ \Rightarrow {t_1} = \dfrac{d}{{30}}hr.$………eq. (1)
For the second journey we have, one third distance at a speed of $20km{h^{ - 1}}$.
The time taken by the bus will be,
$ \Rightarrow 20 = \dfrac{{\dfrac{d}{3}}}{{{t_2}}}$
$ \Rightarrow {t_2} = \dfrac{d}{{60}}hr.$………eq. (2)
For the third journey we have, one third distance at a speed of $30km{h^{ - 1}}$.
The time taken by the bus will be,
$ \Rightarrow 30 = \dfrac{{\dfrac{d}{3}}}{{{t_2}}}$
$ \Rightarrow {t_2} = \dfrac{d}{{90}}hr.$………eq. (3)
The total time taken will be equal to,
$ \Rightarrow {t_{total}} = {t_1} + {t_2} + {t_3}$
Replacing the equations (1), (2) and (3) in the above relation we get,
$ \Rightarrow {t_{total}} = {t_1} + {t_2} + {t_3}$
$ \Rightarrow {t_{total}} = \dfrac{d}{{30}} + \dfrac{d}{{60}} + \dfrac{d}{{90}}$
$ \Rightarrow {t_{total}} = \dfrac{{6d + 3d + 2d}}{{180}}$
$ \Rightarrow {t_{total}} = \dfrac{{11d}}{{180}}$.
The total distance is $d$.
The formula of the average speed is given by,
$ \Rightarrow {s_{avg.}} = \dfrac{{{d_{total}}}}{{{t_{total}}}}$
Where average speed is ${s_{avg.}}$, the total distance is ${d_{total}}$ and the total time taken is ${d_{total}}$.
$ \Rightarrow {s_{avg.}} = \dfrac{{{d_{total}}}}{{{t_{total}}}}$
$ \Rightarrow {s_{avg.}} = \dfrac{d}{{\dfrac{{11d}}{{180}}}}$
$ \Rightarrow {s_{avg.}} = \dfrac{1}{{\dfrac{{11}}{{180}}}}$
$ \Rightarrow {s_{avg.}} = \dfrac{{180}}{{11}}km{h^{ - 1}}$.
The average speed of the bus is equal to ${s_{avg.}} = \dfrac{{180}}{{11}}km{h^{ - 1}}$. The correct answer is option C.
Note: It is advised to the students to understand and remember the formula of the average speed as it is very helpful in solving problems like these. The formula of the speed can be used to calculate the total time taken.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

