
A bullet of mass 20g is fired from the rifle with a velocity of $800\,m{s^{ - 1}}$. After passing a mud wall $100\,cm$ thick, velocity drops to $100\,m{s^{ - 1}}.$ What is the average resistance of the wall $?$$\left( {{\text{Neglect friction due to air and work of gravity}}} \right)$.
Answer
220.8k+ views
Hint In the question, mass, initial velocity and final velocity is given. By substituting the values in the equation of work-energy we get the value of the average resistance of the wall.
Formula used
The expression for finding the average resistance of the wall is
Force $F = \dfrac{1}{2}m{v^2}$
Where,
$m$ be the mass and $v$ be the final velocity.
Complete step by step solution
Given that $m = 20\,g,\,$ Initial velocity $u = 800\,m{s^{ - 1}}$ and final velocity $v = 100\,m{s^{ - 1}}.$
Convert the value of mass in terms of $kg.$
Mass $m = 0.02\,kg.$
Now, we have to find the loss of kinetic energy we get
Kinetic energy in initial velocity – Kinetic energy in Final velocity
So,
$\dfrac{1}{2}m{u^2} - \dfrac{1}{2}m{v^2}$
Simplify the above equation we get
$\dfrac{1}{2}m\left( {{u^2} - {v^2}} \right)$.
Substitute all the known values in the above equation, we get
$\dfrac{1}{2} \times 0.02 \times \left( {{{800}^2} - {{100}^2}} \right)$
Performing the algebraic operations in the above equation, we get
$\dfrac{1}{2} \times 0.02 \times \left( {800 + 100} \right)\left( {800 - 100} \right)$
Performing the arithmetic operations in the above equation, we get
$\dfrac{1}{2} \times 0.02 \times 900 \times 700$
$W = 6300\,J$
Now, we have to using the work energy formula, we get
$W = F \times S$
$S = 100\,cm\,or\,S = 1\,m.$
Convert the above equation, in terms of force, we get
\[Force\,F = \dfrac{W}{S}\]
Substituting the known values in the work energy equation, we get
\[Force\,F = \dfrac{{6300}}{1}\]
$Force\,F = 6300\,N.$
Therefore, the average resistance of the wall is $6300\,N.$
Note: In the question, we neglect the friction due to the air and gravity. By using the algebraic operations in the equation of kinetic energy we get the value of work, then substitute the values in the equation of work-energy we get the value of the resistance force of the wall.
Formula used
The expression for finding the average resistance of the wall is
Force $F = \dfrac{1}{2}m{v^2}$
Where,
$m$ be the mass and $v$ be the final velocity.
Complete step by step solution
Given that $m = 20\,g,\,$ Initial velocity $u = 800\,m{s^{ - 1}}$ and final velocity $v = 100\,m{s^{ - 1}}.$
Convert the value of mass in terms of $kg.$
Mass $m = 0.02\,kg.$
Now, we have to find the loss of kinetic energy we get
Kinetic energy in initial velocity – Kinetic energy in Final velocity
So,
$\dfrac{1}{2}m{u^2} - \dfrac{1}{2}m{v^2}$
Simplify the above equation we get
$\dfrac{1}{2}m\left( {{u^2} - {v^2}} \right)$.
Substitute all the known values in the above equation, we get
$\dfrac{1}{2} \times 0.02 \times \left( {{{800}^2} - {{100}^2}} \right)$
Performing the algebraic operations in the above equation, we get
$\dfrac{1}{2} \times 0.02 \times \left( {800 + 100} \right)\left( {800 - 100} \right)$
Performing the arithmetic operations in the above equation, we get
$\dfrac{1}{2} \times 0.02 \times 900 \times 700$
$W = 6300\,J$
Now, we have to using the work energy formula, we get
$W = F \times S$
$S = 100\,cm\,or\,S = 1\,m.$
Convert the above equation, in terms of force, we get
\[Force\,F = \dfrac{W}{S}\]
Substituting the known values in the work energy equation, we get
\[Force\,F = \dfrac{{6300}}{1}\]
$Force\,F = 6300\,N.$
Therefore, the average resistance of the wall is $6300\,N.$
Note: In the question, we neglect the friction due to the air and gravity. By using the algebraic operations in the equation of kinetic energy we get the value of work, then substitute the values in the equation of work-energy we get the value of the resistance force of the wall.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

