Answer
Verified
85.2k+ views
Hint In the question, mass, initial velocity and final velocity is given. By substituting the values in the equation of work-energy we get the value of the average resistance of the wall.
Formula used
The expression for finding the average resistance of the wall is
Force $F = \dfrac{1}{2}m{v^2}$
Where,
$m$ be the mass and $v$ be the final velocity.
Complete step by step solution
Given that $m = 20\,g,\,$ Initial velocity $u = 800\,m{s^{ - 1}}$ and final velocity $v = 100\,m{s^{ - 1}}.$
Convert the value of mass in terms of $kg.$
Mass $m = 0.02\,kg.$
Now, we have to find the loss of kinetic energy we get
Kinetic energy in initial velocity – Kinetic energy in Final velocity
So,
$\dfrac{1}{2}m{u^2} - \dfrac{1}{2}m{v^2}$
Simplify the above equation we get
$\dfrac{1}{2}m\left( {{u^2} - {v^2}} \right)$.
Substitute all the known values in the above equation, we get
$\dfrac{1}{2} \times 0.02 \times \left( {{{800}^2} - {{100}^2}} \right)$
Performing the algebraic operations in the above equation, we get
$\dfrac{1}{2} \times 0.02 \times \left( {800 + 100} \right)\left( {800 - 100} \right)$
Performing the arithmetic operations in the above equation, we get
$\dfrac{1}{2} \times 0.02 \times 900 \times 700$
$W = 6300\,J$
Now, we have to using the work energy formula, we get
$W = F \times S$
$S = 100\,cm\,or\,S = 1\,m.$
Convert the above equation, in terms of force, we get
\[Force\,F = \dfrac{W}{S}\]
Substituting the known values in the work energy equation, we get
\[Force\,F = \dfrac{{6300}}{1}\]
$Force\,F = 6300\,N.$
Therefore, the average resistance of the wall is $6300\,N.$
Note: In the question, we neglect the friction due to the air and gravity. By using the algebraic operations in the equation of kinetic energy we get the value of work, then substitute the values in the equation of work-energy we get the value of the resistance force of the wall.
Formula used
The expression for finding the average resistance of the wall is
Force $F = \dfrac{1}{2}m{v^2}$
Where,
$m$ be the mass and $v$ be the final velocity.
Complete step by step solution
Given that $m = 20\,g,\,$ Initial velocity $u = 800\,m{s^{ - 1}}$ and final velocity $v = 100\,m{s^{ - 1}}.$
Convert the value of mass in terms of $kg.$
Mass $m = 0.02\,kg.$
Now, we have to find the loss of kinetic energy we get
Kinetic energy in initial velocity – Kinetic energy in Final velocity
So,
$\dfrac{1}{2}m{u^2} - \dfrac{1}{2}m{v^2}$
Simplify the above equation we get
$\dfrac{1}{2}m\left( {{u^2} - {v^2}} \right)$.
Substitute all the known values in the above equation, we get
$\dfrac{1}{2} \times 0.02 \times \left( {{{800}^2} - {{100}^2}} \right)$
Performing the algebraic operations in the above equation, we get
$\dfrac{1}{2} \times 0.02 \times \left( {800 + 100} \right)\left( {800 - 100} \right)$
Performing the arithmetic operations in the above equation, we get
$\dfrac{1}{2} \times 0.02 \times 900 \times 700$
$W = 6300\,J$
Now, we have to using the work energy formula, we get
$W = F \times S$
$S = 100\,cm\,or\,S = 1\,m.$
Convert the above equation, in terms of force, we get
\[Force\,F = \dfrac{W}{S}\]
Substituting the known values in the work energy equation, we get
\[Force\,F = \dfrac{{6300}}{1}\]
$Force\,F = 6300\,N.$
Therefore, the average resistance of the wall is $6300\,N.$
Note: In the question, we neglect the friction due to the air and gravity. By using the algebraic operations in the equation of kinetic energy we get the value of work, then substitute the values in the equation of work-energy we get the value of the resistance force of the wall.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The reaction of Zinc with dilute and concentrated nitric class 12 chemistry JEE_Main
Two blocks are in contact on a frictionless table One class 11 physics JEE_Main
If a gas expands at constant temperature it indicates class 11 chemistry JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
A vector of 10N makes an angle of 30circ with positive class 11 physics JEE_Main