
A bullet of mass 0.04 kg moving with a speed of $90 ms^{-1}$ enters a heavy wooden block and is stopped after a distance of 60 cm. What is the average resistive force exerted by the block on the bullet?
Answer
126k+ views
Hint: This problem can be solved by first finding out the negative acceleration (or deceleration) of the bullet by using the given information and applying the equations of uniform motion. Then, we will use Newton’s second law of motion which says that the force on a body is the product of the mass and the acceleration produced by the force, to find out the average resistive force.
Formula used:
$\dfrac{{{v}^{2}}-{{u}^{2}}}{2s}=a$
Where v, u, s, and a are the final and initial velocity, displacement, and acceleration of the body respectively.
$F=ma$
Where F, m and a are the force on the body, its mass and the acceleration of the body.
Complete step by step answer:
First, we will identify the information given to us in the question and understand it.
Given, the initial velocity of the bullet (u) = $90 ms^{-1}$.
Final velocity of the bullet (v) = 0 ms-1 since it comes to a stop
Displacement of the bullet inside the block (s) = 60 cm or 0.6m $\left( \because 100cm=1m \right)$
Mass of the body (m) = 0.04 kg
Now, to find out the acceleration of the bullet due to the block, we will use the equation of motion
$\dfrac{{{v}^{2}}-{{u}^{2}}}{2s}=a$
$\therefore a=\dfrac{{{0}^{2}}-{{90}^{2}}}{2\times 0.06}=-\dfrac{8100}{0.12}=-67500m{{s}^{-2}}$ --(1)
The acceleration is negative since the bullet is decelerating due to the retarding or resistive force of the block.
Now, using Newton’s second law of motion which says that the force on a body is the product of the mass and the acceleration produced by the force, we will find out the force applied by the block on the bullet. Thus,
$F=ma$
$=0.04\times \left( -67500 \right)=-2700N$
The force is negative since it is a resistive force (it tries to decelerate the bullet opposing its motion).
Thus, the magnitude of the resistive force exerted by the block on the bullet is 2700N.
Note: Students must not get confused by seeing the negative signs of acceleration and force. It only means that the body is decelerating due to the resistive or retarding force applied to it. It is a good practice to explain the reason behind a force or acceleration being negative, in examinations. In fact, forces should always be written with correct signs in front of them to let the reader understand that the force is a resistive one.
Formula used:
$\dfrac{{{v}^{2}}-{{u}^{2}}}{2s}=a$
Where v, u, s, and a are the final and initial velocity, displacement, and acceleration of the body respectively.
$F=ma$
Where F, m and a are the force on the body, its mass and the acceleration of the body.
Complete step by step answer:
First, we will identify the information given to us in the question and understand it.
Given, the initial velocity of the bullet (u) = $90 ms^{-1}$.
Final velocity of the bullet (v) = 0 ms-1 since it comes to a stop
Displacement of the bullet inside the block (s) = 60 cm or 0.6m $\left( \because 100cm=1m \right)$
Mass of the body (m) = 0.04 kg
Now, to find out the acceleration of the bullet due to the block, we will use the equation of motion
$\dfrac{{{v}^{2}}-{{u}^{2}}}{2s}=a$
$\therefore a=\dfrac{{{0}^{2}}-{{90}^{2}}}{2\times 0.06}=-\dfrac{8100}{0.12}=-67500m{{s}^{-2}}$ --(1)
The acceleration is negative since the bullet is decelerating due to the retarding or resistive force of the block.
Now, using Newton’s second law of motion which says that the force on a body is the product of the mass and the acceleration produced by the force, we will find out the force applied by the block on the bullet. Thus,
$F=ma$
$=0.04\times \left( -67500 \right)=-2700N$
The force is negative since it is a resistive force (it tries to decelerate the bullet opposing its motion).
Thus, the magnitude of the resistive force exerted by the block on the bullet is 2700N.
Note: Students must not get confused by seeing the negative signs of acceleration and force. It only means that the body is decelerating due to the resistive or retarding force applied to it. It is a good practice to explain the reason behind a force or acceleration being negative, in examinations. In fact, forces should always be written with correct signs in front of them to let the reader understand that the force is a resistive one.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Mass and Weight

JEE Main Previous Year Question Paper with Answers - Download FREE PDF

JEE Main Sample Papers 2025 with Solutions - FREE PDF Download

JEE Main 2025 22 Jan Shift 1 Physics Answer Key with Solutions

JEE Main Mock Test For 2025 - FREE Test Series

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025 22 Jan Shift 1 Question Paper with Solutions

JEE Main Question Papers 2025

JEE Main Sample Paper (Set 1) with Solutions (2024-25)

JEE Main Syllabus 2025 (Updated)

Other Pages
India Republic Day 2025: History and Importance of Celebration

CBSE Date Sheet 2025 Released for Class 12 Board Exams, Download PDF

CBSE Board Exam Date Sheet Class 10 2025 (Released): Download Class 10th Exam Dates PDF

Republic Day Speech: Celebrating India's Independence

Essay on Christmas: The Joy of Giving and Sharing

JEE Mains 2024 27 Jan Shift 1 Paper with Solutions [PDF]
