
A bullet is fired from a rifle with a velocity \[750m/s\]. If the length of the rifle barrel is $60cm$. Calculate average velocity of the bullet, while being accelerated in the barrel, Find the time taken by bullet to travel.
Answer
232.8k+ views
Hint: Calculate average velocity, we add initial and final velocity and divide their sum with 2, then to find acceleration we use the third equation of motion, and finally to find out the time taken by a bullet to travel, we use the first equation of motion.
Given:
Length of barrel, $S = 60cm$
As the velocity of bullet is given in $m/s$then, the distance should be in $m$
So, $S = 0.6m$
Final velocity, $V = 750m/s$
Initial velocity, $U = 0$
Formula used:
${V_{avg}} = \dfrac{{U + V}}{2}$
${V^2} = {U^2} + 2aS$
$\dfrac{{V - U}}{T} = a$
Complete Step by step solution:
To calculate the average velocity of the bullet, we use a formula in which the sum of initial and final velocity is divided by 2.
Now, we will calculate the average velocity
${V_{avg}} = \dfrac{{U + V}}{2}$
\[ = \dfrac{{0 + 750}}{2}\](Putting value of $U$and$V$)
$ = 375m/s$
Here we got an average velocity of the bullet which is $375m/s$
Now, you know there is a relationship between initial velocity, final velocity, distance, and acceleration
${V^2} = {U^2} + 2aS$(Here $a$is an acceleration)
${750^2} = 0 + 2a \times 0.6$(Putting values of $U,S$and$V$ )
$a = \dfrac{{562500}}{{1.2}} = 468750 = 46.88 \times {10^4}m/s$
Here we got acceleration, which we can use in the relation of final velocity, initial velocity, acceleration, and time, where we have everything except time, so we will calculate time from this relation.$\dfrac{{V - U}}{T} = a$
After simplification, we can write this equation, as below
$T = \dfrac{{V - U}}{a}$
$ = \dfrac{{750 - 0}}{{46.88 \times {{10}^4}}}$(Putting values of $U,a$and$V$)
$ = 15.998 \times {10^{ - 4}}s$
Here, we have calculated the time taken by a bullet to travel.
Note: Point to be noted is, as we know that at the starting point the bullet was in the rifle at rest position, so we will assume that the initial velocity of the bullet is zero. And we should note equations of motion to relate our given value to find out the acceleration of the bullet and time taken by the bullet.
Given:
Length of barrel, $S = 60cm$
As the velocity of bullet is given in $m/s$then, the distance should be in $m$
So, $S = 0.6m$
Final velocity, $V = 750m/s$
Initial velocity, $U = 0$
Formula used:
${V_{avg}} = \dfrac{{U + V}}{2}$
${V^2} = {U^2} + 2aS$
$\dfrac{{V - U}}{T} = a$
Complete Step by step solution:
To calculate the average velocity of the bullet, we use a formula in which the sum of initial and final velocity is divided by 2.
Now, we will calculate the average velocity
${V_{avg}} = \dfrac{{U + V}}{2}$
\[ = \dfrac{{0 + 750}}{2}\](Putting value of $U$and$V$)
$ = 375m/s$
Here we got an average velocity of the bullet which is $375m/s$
Now, you know there is a relationship between initial velocity, final velocity, distance, and acceleration
${V^2} = {U^2} + 2aS$(Here $a$is an acceleration)
${750^2} = 0 + 2a \times 0.6$(Putting values of $U,S$and$V$ )
$a = \dfrac{{562500}}{{1.2}} = 468750 = 46.88 \times {10^4}m/s$
Here we got acceleration, which we can use in the relation of final velocity, initial velocity, acceleration, and time, where we have everything except time, so we will calculate time from this relation.$\dfrac{{V - U}}{T} = a$
After simplification, we can write this equation, as below
$T = \dfrac{{V - U}}{a}$
$ = \dfrac{{750 - 0}}{{46.88 \times {{10}^4}}}$(Putting values of $U,a$and$V$)
$ = 15.998 \times {10^{ - 4}}s$
Here, we have calculated the time taken by a bullet to travel.
Note: Point to be noted is, as we know that at the starting point the bullet was in the rifle at rest position, so we will assume that the initial velocity of the bullet is zero. And we should note equations of motion to relate our given value to find out the acceleration of the bullet and time taken by the bullet.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

