
A box weighing 2000 N is to be slowly slid through 20 m on a straight track having friction coefficient 0.2 with the box. Find the work done by the person pulling the box with a chain at an angle θ with the horizontal.
Answer
232.8k+ views
Hint: For just sliding the box without any acceleration force applied on the box will be just enough to counterbalance the frictional force provided by the floor.
Apply the equilibrium conditions:
\[\sum {{F_x} = 0,\sum {{F_Y} = 0} } \]
Then, find the work done by the expression,
Work done = component of force acting in the direction of displacement $ \times $ total displacement of the box
Complete step by step answer:
Let’s start with a free body diagram.

Given that,
Weight of the box = 2000 N
Friction coefficient $ = \mu = 0.2$
The box slowly slid through the floor about 20 m.
From free body diagram the forces acting on the boxes are:
Weight of the box is acting downwards,
W = mg = 2000 N
Normal reaction force will be acting upwards.
The force exerted by a person will have two components given by \[Fcos\theta \] and \[Fsin\theta \].
The frictional force acting on the box $ = {f_r} = \mu N$
To make the box to remain in its equilibrium condition, the sum of all forces acting on the box is zero.
Thus, on applying equilibrium conditions.
$\sum {{F_y} = 0} $ (forces acting in vertical direction)
$ \Rightarrow N + F\sin \theta - 2000 = 0$
$ \Rightarrow N = 2000 - F\sin \theta $
Similarly,
$\sum {{F_x} = 0} $
$ \Rightarrow F\cos \theta - {f_r} = 0$
$ \Rightarrow F\cos \theta = {f_r}$
$ \Rightarrow F\cos \theta = \mu N = 0.2N$
Substituting, the value of normal force N, we get
$ \Rightarrow F\cos \theta = 0.2(2000 - F\sin \theta )$
$ \Rightarrow F\cos \theta + 0.2F\sin \theta = 400$
$ \Rightarrow F = \dfrac{{400}}{{\cos \theta + 0.2\sin \theta }}$
Therefore, work done in pushing the block is given by
$ \Rightarrow W = F.s$
$ \Rightarrow W = F\cos \theta \times s$
$ \Rightarrow W = 20\left( {\dfrac{{400}}{{\cos \theta + 0.2\sin \theta }}} \right)\cos \theta $
$ \Rightarrow W = \dfrac{{8000}}{{1 + 0.2\tan \theta }}joule$
Note:
The formula for work done is given by a dot product, hence it is a scalar quantity. Mathematically it is given by $W = \vec F.\vec s$
The SI unit of work is joule(J).
Apply the equilibrium conditions:
\[\sum {{F_x} = 0,\sum {{F_Y} = 0} } \]
Then, find the work done by the expression,
Work done = component of force acting in the direction of displacement $ \times $ total displacement of the box
Complete step by step answer:
Let’s start with a free body diagram.

Given that,
Weight of the box = 2000 N
Friction coefficient $ = \mu = 0.2$
The box slowly slid through the floor about 20 m.
From free body diagram the forces acting on the boxes are:
Weight of the box is acting downwards,
W = mg = 2000 N
Normal reaction force will be acting upwards.
The force exerted by a person will have two components given by \[Fcos\theta \] and \[Fsin\theta \].
The frictional force acting on the box $ = {f_r} = \mu N$
To make the box to remain in its equilibrium condition, the sum of all forces acting on the box is zero.
Thus, on applying equilibrium conditions.
$\sum {{F_y} = 0} $ (forces acting in vertical direction)
$ \Rightarrow N + F\sin \theta - 2000 = 0$
$ \Rightarrow N = 2000 - F\sin \theta $
Similarly,
$\sum {{F_x} = 0} $
$ \Rightarrow F\cos \theta - {f_r} = 0$
$ \Rightarrow F\cos \theta = {f_r}$
$ \Rightarrow F\cos \theta = \mu N = 0.2N$
Substituting, the value of normal force N, we get
$ \Rightarrow F\cos \theta = 0.2(2000 - F\sin \theta )$
$ \Rightarrow F\cos \theta + 0.2F\sin \theta = 400$
$ \Rightarrow F = \dfrac{{400}}{{\cos \theta + 0.2\sin \theta }}$
Therefore, work done in pushing the block is given by
$ \Rightarrow W = F.s$
$ \Rightarrow W = F\cos \theta \times s$
$ \Rightarrow W = 20\left( {\dfrac{{400}}{{\cos \theta + 0.2\sin \theta }}} \right)\cos \theta $
$ \Rightarrow W = \dfrac{{8000}}{{1 + 0.2\tan \theta }}joule$
Note:
The formula for work done is given by a dot product, hence it is a scalar quantity. Mathematically it is given by $W = \vec F.\vec s$
The SI unit of work is joule(J).
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

