Answer
Verified
89.1k+ views
Hint: First we find out the number of ways the distribution can be done in all the 3 cases. The cases being 6 distinct colored balls or 6 balls three each of two colors or 6 balls of two each of three colors. We find the number of ways each case can be done and add them to find the final answer.
Complete step-by-step solution
A box contains 6 balls which may be all of different colors or three each of two colors or two each of three different colors.
So, the number of cases of possible options is 3.
Case 1: 6 distinct colored balls
We need to choose 3 balls out of 6 distinct ones which will be done in ${}^{6}{{C}_{3}}=\dfrac{6!}{3!\times 3!}=20$.
Case 2: 6 balls three each of two colors
We need to choose 3 balls. The choices can be 2 same-colored balls and 1 different or all three of same-colored balls.
The first part (2 white 1 black or 2 black 1 white) can be done in
$2\left[ {}^{3}{{C}_{2}}\times {}^{3}{{C}_{1}} \right]=2\times \dfrac{3!}{2!\times 1!}\times \dfrac{3!}{2!\times 1!}=18$.
The second part (3 white or 3 black) can be done in ${}^{3}{{C}_{3}}+{}^{3}{{C}_{3}}=1+1=2$.
Case 3: 6 balls of two each of three colors
We need to choose 3 balls. The choices can be 2 same-colored balls and 1 different or all three of different colored balls.
The first part can be done in choosing which color we are taking 2 balls off.
\[{}^{3}{{C}_{1}}\times {}^{2}{{C}_{1}}\times {}^{2}{{C}_{1}}=3\times 2\times 2=12\].
The second part (1 white and 1 black and 1 red) can be done in \[{}^{2}{{C}_{1}}\times {}^{2}{{C}_{1}}\times {}^{2}{{C}_{1}}={{2}^{3}}=8\].
Total number of options are $20+18+2+12+8=60$. The value of N is 20.
Note: We need to separately find the ways of choosing and we can use a table and actual color names to solve the problem. The multiplication of choosing is happening as the events are independent of each other.
Complete step-by-step solution
A box contains 6 balls which may be all of different colors or three each of two colors or two each of three different colors.
So, the number of cases of possible options is 3.
Case 1: 6 distinct colored balls
We need to choose 3 balls out of 6 distinct ones which will be done in ${}^{6}{{C}_{3}}=\dfrac{6!}{3!\times 3!}=20$.
Case 2: 6 balls three each of two colors
We need to choose 3 balls. The choices can be 2 same-colored balls and 1 different or all three of same-colored balls.
The first part (2 white 1 black or 2 black 1 white) can be done in
$2\left[ {}^{3}{{C}_{2}}\times {}^{3}{{C}_{1}} \right]=2\times \dfrac{3!}{2!\times 1!}\times \dfrac{3!}{2!\times 1!}=18$.
The second part (3 white or 3 black) can be done in ${}^{3}{{C}_{3}}+{}^{3}{{C}_{3}}=1+1=2$.
Case 3: 6 balls of two each of three colors
We need to choose 3 balls. The choices can be 2 same-colored balls and 1 different or all three of different colored balls.
The first part can be done in choosing which color we are taking 2 balls off.
\[{}^{3}{{C}_{1}}\times {}^{2}{{C}_{1}}\times {}^{2}{{C}_{1}}=3\times 2\times 2=12\].
The second part (1 white and 1 black and 1 red) can be done in \[{}^{2}{{C}_{1}}\times {}^{2}{{C}_{1}}\times {}^{2}{{C}_{1}}={{2}^{3}}=8\].
Total number of options are $20+18+2+12+8=60$. The value of N is 20.
Note: We need to separately find the ways of choosing and we can use a table and actual color names to solve the problem. The multiplication of choosing is happening as the events are independent of each other.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main