
A body starts slipping down an incline and moves half meter in half second. How long will it take to move the next half meter?
Answer
220.8k+ views
Hint: Use the formula of the displacement in the equation of motion and find the acceleration of the body. Substitute this in the other equation of motion to find the final velocity. Keep that as the initial velocity of the body and substitute this in the first equation of motion to find the value of the time taken.
Formula used:
The equations of motion is given by
$ s = ut + \dfrac{1}{2}a{t^2} \\
v = u + at \\
$
Where $s$ is the distance covered, $u$ is the initial velocity, $a$ is the acceleration of the body, $v$ is the final velocity of the body and $t$ is the time taken for the movement.
Complete step by step solution:
It is given that the
Distance moved, $d = 0.5\,m$
Time taken for travelling the distance of half meter, $t = 0.5\,s$
Using the equation of the motion,
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting the known parameters in the above equation, we get
$\Rightarrow 0.5 = 0t + \dfrac{1}{2}a{\left( {0.5} \right)^2}$
By performing various arithmetic operations, we get
$\Rightarrow a = 4\,m{s^{ - 2}}$
Using the other equation of motion,
$v = u + at$
Substituting the initial velocity, acceleration and the time taken in it
$\Rightarrow v = 0 + 4 \times 0.5 = 2\,m{s^{ - 1}}$
Hence the final velocity of the body is obtained as $2\,m{s^{ - 1}}$ . For the next $0.5\,m$ , the previous final velocity becomes the initial velocity but the acceleration remains the same.
$s = ut + \dfrac{1}{2}a{t^2}$
$\Rightarrow s = 2t + \dfrac{1}{2}4{t^2}$
By simplifying the above equation, we get
$\Rightarrow 2t + 2{t^2} - 0.5 = 0$
By solving the above equation, we get
$\Rightarrow t = 0.207s$
Hence the time taken to cover the second $0.5\,m$ is $0.21\,s$.
Note: The velocity of the body that slides on the inclined surface mainly depends on the friction of the surface, mass of the body and the slope of the inclination of the surface. If the surface is rough and so the friction is more and hence the velocity of the body reduces. If it has a smooth slippery surface, it has a greater velocity.
Formula used:
The equations of motion is given by
$ s = ut + \dfrac{1}{2}a{t^2} \\
v = u + at \\
$
Where $s$ is the distance covered, $u$ is the initial velocity, $a$ is the acceleration of the body, $v$ is the final velocity of the body and $t$ is the time taken for the movement.
Complete step by step solution:
It is given that the
Distance moved, $d = 0.5\,m$
Time taken for travelling the distance of half meter, $t = 0.5\,s$
Using the equation of the motion,
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting the known parameters in the above equation, we get
$\Rightarrow 0.5 = 0t + \dfrac{1}{2}a{\left( {0.5} \right)^2}$
By performing various arithmetic operations, we get
$\Rightarrow a = 4\,m{s^{ - 2}}$
Using the other equation of motion,
$v = u + at$
Substituting the initial velocity, acceleration and the time taken in it
$\Rightarrow v = 0 + 4 \times 0.5 = 2\,m{s^{ - 1}}$
Hence the final velocity of the body is obtained as $2\,m{s^{ - 1}}$ . For the next $0.5\,m$ , the previous final velocity becomes the initial velocity but the acceleration remains the same.
$s = ut + \dfrac{1}{2}a{t^2}$
$\Rightarrow s = 2t + \dfrac{1}{2}4{t^2}$
By simplifying the above equation, we get
$\Rightarrow 2t + 2{t^2} - 0.5 = 0$
By solving the above equation, we get
$\Rightarrow t = 0.207s$
Hence the time taken to cover the second $0.5\,m$ is $0.21\,s$.
Note: The velocity of the body that slides on the inclined surface mainly depends on the friction of the surface, mass of the body and the slope of the inclination of the surface. If the surface is rough and so the friction is more and hence the velocity of the body reduces. If it has a smooth slippery surface, it has a greater velocity.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

