
A body projected horizontally with a velocity $v$ from a height $h$ has a range $R$. With what velocity this body has to be projected horizontally from a height $\dfrac{h}{2}$ to have the same range?
A. $\sqrt 2 v$
B. $2v$
C. $6\,v$
D. \[8\,v\]
Answer
169.8k+ views
Hint: We can use the equation of motion for vertical displacement and horizontal displacement to find the answer. In the vertical displacement there is acceleration due to gravity. Whereas in the horizontal direction there is no acceleration due to gravity. Using this we can find the equation for range and height for both the cases. Then by comparing the equations we can find the final velocity with which it should be projected for getting the same range.
Complete step by step answer:
It is given that a body is projected horizontally from a height h with a velocity v.
The range is R.
We need to find the velocity of this body when it is projected from a height $\dfrac{h}{2}$ such that it has the same range.
Consider the figure given below

Height h is the vertical displacement.
We know the second equation of motion given as
$s = ut + \dfrac{1}{2}a{t^2}$
Where, s is the displacement, u is the initial velocity, t is the time taken, a is the acceleration.
So, the equation for the vertical displacement can be written as
$h = 0 \times t + \dfrac{1}{2}g{t^2}$
Here the velocity in y direction can be taken zero initially because the body is projected horizontally so there is only velocity in x direction.
$ \Rightarrow h = \dfrac{1}{2}g{t^2}$ (1)
Now let us write the equation of motion for the horizontal displacement which is the range R .
The acceleration due to gravity acts only in the vertical direction hence in this case g can be taken as zero.
$ \Rightarrow R = vt + 0$
$ \Rightarrow R = vt$
$ \Rightarrow t = \dfrac{R}{v}$ (2)
Now substituting the value of t from equation to in equation 1 we get
$ \Rightarrow h = \dfrac{1}{2}g{\left( {\dfrac{R}{v}} \right)^2}$ (3)
Now let us analyze the second case. Let the velocity with which it is projected is $v'$ .

The equation for vertical displacement can be written as
$\dfrac{h}{2} = 0 \times t' + \dfrac{1}{2}g{t'^2}$
$ \Rightarrow \dfrac{h}{2} = \dfrac{1}{2}g{t'^2}$ (4)
The equation for the horizontal displacement can be written as
$R = v't' + 0$
$ \Rightarrow R = v't'$
$ \Rightarrow t' = \dfrac{R}{{v'}}$ (5)
Substituting the value of $t'$ in equation 4 we get
$ \Rightarrow \dfrac{h}{2} = \dfrac{1}{2}g{\left( {\dfrac{R}{{v'}}} \right)^2}$ (6)
Now let us divide equation 3 by equation 6.
Then we get
$ \Rightarrow \dfrac{{2h}}{h} = \dfrac{{\dfrac{1}{2}g{{\left( {\dfrac{R}{v}} \right)}^2}}}{{\dfrac{1}{2}g{{\left( {\dfrac{R}{{v'}}} \right)}^2}}}$
$ \Rightarrow 2 = {\left( {\dfrac{{v'}}{v}} \right)^2}$
$ \Rightarrow \sqrt 2 = \dfrac{{v'}}{v}$
$\therefore v' = v\sqrt 2 $
This is the value of velocity with which it should be projected for getting the same range $R$ at a height $\dfrac{h}{2}$.
So, the correct answer is option A.
Note: Always remember that gravity will accelerate a body only in the vertical direction. Gravity will not pull a projectile sideways. It will only pull in the downward direction. So, while writing the equation of motion for the horizontal displacement the acceleration due to gravity should be taken as zero.
Complete step by step answer:
It is given that a body is projected horizontally from a height h with a velocity v.
The range is R.
We need to find the velocity of this body when it is projected from a height $\dfrac{h}{2}$ such that it has the same range.
Consider the figure given below

Height h is the vertical displacement.
We know the second equation of motion given as
$s = ut + \dfrac{1}{2}a{t^2}$
Where, s is the displacement, u is the initial velocity, t is the time taken, a is the acceleration.
So, the equation for the vertical displacement can be written as
$h = 0 \times t + \dfrac{1}{2}g{t^2}$
Here the velocity in y direction can be taken zero initially because the body is projected horizontally so there is only velocity in x direction.
$ \Rightarrow h = \dfrac{1}{2}g{t^2}$ (1)
Now let us write the equation of motion for the horizontal displacement which is the range R .
The acceleration due to gravity acts only in the vertical direction hence in this case g can be taken as zero.
$ \Rightarrow R = vt + 0$
$ \Rightarrow R = vt$
$ \Rightarrow t = \dfrac{R}{v}$ (2)
Now substituting the value of t from equation to in equation 1 we get
$ \Rightarrow h = \dfrac{1}{2}g{\left( {\dfrac{R}{v}} \right)^2}$ (3)
Now let us analyze the second case. Let the velocity with which it is projected is $v'$ .

The equation for vertical displacement can be written as
$\dfrac{h}{2} = 0 \times t' + \dfrac{1}{2}g{t'^2}$
$ \Rightarrow \dfrac{h}{2} = \dfrac{1}{2}g{t'^2}$ (4)
The equation for the horizontal displacement can be written as
$R = v't' + 0$
$ \Rightarrow R = v't'$
$ \Rightarrow t' = \dfrac{R}{{v'}}$ (5)
Substituting the value of $t'$ in equation 4 we get
$ \Rightarrow \dfrac{h}{2} = \dfrac{1}{2}g{\left( {\dfrac{R}{{v'}}} \right)^2}$ (6)
Now let us divide equation 3 by equation 6.
Then we get
$ \Rightarrow \dfrac{{2h}}{h} = \dfrac{{\dfrac{1}{2}g{{\left( {\dfrac{R}{v}} \right)}^2}}}{{\dfrac{1}{2}g{{\left( {\dfrac{R}{{v'}}} \right)}^2}}}$
$ \Rightarrow 2 = {\left( {\dfrac{{v'}}{v}} \right)^2}$
$ \Rightarrow \sqrt 2 = \dfrac{{v'}}{v}$
$\therefore v' = v\sqrt 2 $
This is the value of velocity with which it should be projected for getting the same range $R$ at a height $\dfrac{h}{2}$.
So, the correct answer is option A.
Note: Always remember that gravity will accelerate a body only in the vertical direction. Gravity will not pull a projectile sideways. It will only pull in the downward direction. So, while writing the equation of motion for the horizontal displacement the acceleration due to gravity should be taken as zero.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Instantaneous Velocity - Formula based Examples for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solution for Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solution for Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
