
A body oscillates with SHM according to the equation (in S.I. unit) $x = \cos [2\pi t + \dfrac{\pi }{4}]$. At $t = 1.5\sec $, calculate the
(1) Displacement
(2) Speed and
(3) Acceleration of the body
Answer
214.5k+ views
Hint: Simple harmonic motion is a special type of periodic motion. In this type of motion the acceleration of the particle is directly proportional to the displacement of the body from its mean position. The force is always directed towards the mean position. It is a special case of oscillatory motion.
Complete step by step solution:
1. Displacement is defined as the change in the position of the object.
Given $x = \cos [2\pi t + \dfrac{\pi }{4}]$---(i)
At $t = 1.5\sec $
Substituting the value of time in the equation (i),
$\Rightarrow {x_{t = 1.5}} = \cos [2\pi \times 1.5 + \dfrac{\pi }{4}]$
$\Rightarrow {x_{t = 1.5}} = \cos [3\pi + \dfrac{\pi }{4}]$
$\Rightarrow {x_{t = 1.5}} = \cos [\dfrac{{7\pi + \pi }}{4}]$
$\Rightarrow {x_{t = 1.5}} = \cos \dfrac{{8\pi }}{4}$
$\Rightarrow {x_{t = 1.5}} = \cos [2\pi ]$
$\cos n\pi = 1$ if n is an even number.
$\therefore $ ${x_{t = 1.5}} = 1m$
Displacement of the particle is $x = 1m$
2. Speed is the rate of change of displacement with time. It can be writ
$ \Rightarrow v = \dfrac{{dx}}{{dt}}$
$\Rightarrow v = \dfrac{d}{{dt}}[\cos (2\pi t + \dfrac{\pi }{4})]$
$\Rightarrow v = - \sin (2\pi t + \dfrac{\pi }{4}).2\pi $---(ii)
At $t = 1.5\sec $
Substituting the value of time in equation (ii)
$\Rightarrow {v_{t = 1.5}} = - 2\pi \sin (2\pi \times 1.5 + \dfrac{\pi }{4})$
$\Rightarrow {v_{t = 1.5}} = - 2\pi \sin (3\pi + \dfrac{\pi }{4})$
$\Rightarrow {v_{t = 1.5}} = - 2\pi \sin (2\pi )$
$\sin n\pi = 0$ if n is an even number
$\therefore {v_{t = 1.5}} = 0$
The speed of the particle is $v = 0$.
3. Acceleration is the rate of change of velocity with respect to time. It can be written by using the formula
$a = \dfrac{{dv}}{{dt}}$
$\Rightarrow a = \dfrac{d}{{dt}}[ - 2\pi \sin (2\pi t + \dfrac{\pi }{4})]$
$\Rightarrow a = - 2\pi \cos (2\pi t + \dfrac{\pi }{4}) \times 2\pi $---(iii)
At $t = 1.5\sec $
Substituting the value of time in equation (iii)
$\Rightarrow a = - 2\pi \cos (2\pi \times 1.5 + \dfrac{\pi }{4}) \times 2\pi $
$\Rightarrow a = - 4{\pi ^2}\cos (3\pi + \dfrac{\pi }{4})$
$\Rightarrow a = - 4{\pi ^2}\cos (2\pi )$
$\cos n\pi = 1$if n is an even integer
$\therefore a = - 4{\pi ^2}$
The acceleration of the particle is $a = - 4{\pi ^2}$.
Note: It is to be noted that though simple harmonic motion is a special case of oscillatory motion, they are different. Oscillatory motion is the to and fro motion of the particle from its mean position. An object can be in oscillatory motion forever in the absence of friction. But simple harmonic motion is a type of oscillatory motion in which the particle moves along a straight line such that magnitude is proportional to the distance.
Complete step by step solution:
1. Displacement is defined as the change in the position of the object.
Given $x = \cos [2\pi t + \dfrac{\pi }{4}]$---(i)
At $t = 1.5\sec $
Substituting the value of time in the equation (i),
$\Rightarrow {x_{t = 1.5}} = \cos [2\pi \times 1.5 + \dfrac{\pi }{4}]$
$\Rightarrow {x_{t = 1.5}} = \cos [3\pi + \dfrac{\pi }{4}]$
$\Rightarrow {x_{t = 1.5}} = \cos [\dfrac{{7\pi + \pi }}{4}]$
$\Rightarrow {x_{t = 1.5}} = \cos \dfrac{{8\pi }}{4}$
$\Rightarrow {x_{t = 1.5}} = \cos [2\pi ]$
$\cos n\pi = 1$ if n is an even number.
$\therefore $ ${x_{t = 1.5}} = 1m$
Displacement of the particle is $x = 1m$
2. Speed is the rate of change of displacement with time. It can be writ
$ \Rightarrow v = \dfrac{{dx}}{{dt}}$
$\Rightarrow v = \dfrac{d}{{dt}}[\cos (2\pi t + \dfrac{\pi }{4})]$
$\Rightarrow v = - \sin (2\pi t + \dfrac{\pi }{4}).2\pi $---(ii)
At $t = 1.5\sec $
Substituting the value of time in equation (ii)
$\Rightarrow {v_{t = 1.5}} = - 2\pi \sin (2\pi \times 1.5 + \dfrac{\pi }{4})$
$\Rightarrow {v_{t = 1.5}} = - 2\pi \sin (3\pi + \dfrac{\pi }{4})$
$\Rightarrow {v_{t = 1.5}} = - 2\pi \sin (2\pi )$
$\sin n\pi = 0$ if n is an even number
$\therefore {v_{t = 1.5}} = 0$
The speed of the particle is $v = 0$.
3. Acceleration is the rate of change of velocity with respect to time. It can be written by using the formula
$a = \dfrac{{dv}}{{dt}}$
$\Rightarrow a = \dfrac{d}{{dt}}[ - 2\pi \sin (2\pi t + \dfrac{\pi }{4})]$
$\Rightarrow a = - 2\pi \cos (2\pi t + \dfrac{\pi }{4}) \times 2\pi $---(iii)
At $t = 1.5\sec $
Substituting the value of time in equation (iii)
$\Rightarrow a = - 2\pi \cos (2\pi \times 1.5 + \dfrac{\pi }{4}) \times 2\pi $
$\Rightarrow a = - 4{\pi ^2}\cos (3\pi + \dfrac{\pi }{4})$
$\Rightarrow a = - 4{\pi ^2}\cos (2\pi )$
$\cos n\pi = 1$if n is an even integer
$\therefore a = - 4{\pi ^2}$
The acceleration of the particle is $a = - 4{\pi ^2}$.
Note: It is to be noted that though simple harmonic motion is a special case of oscillatory motion, they are different. Oscillatory motion is the to and fro motion of the particle from its mean position. An object can be in oscillatory motion forever in the absence of friction. But simple harmonic motion is a type of oscillatory motion in which the particle moves along a straight line such that magnitude is proportional to the distance.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Atomic Structure: Definition, Models, and Examples

Electromagnetic Waves – Meaning, Types, Properties & Applications

Charging and Discharging of Capacitor Explained

What is the period of small oscillations of the block class 11 physics JEE_Main

JEE Main 2026 Helpline Numbers for Aspiring Candidates

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Free Radical Substitution and Its Stepwise Mechanism

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

In a Conical pendulum a string of length 120cm is fixed class 11 physics JEE_Main

