
A body of length 1 m having a cross-sectional area \[0.75{m^2}\]has heat flow through it at the rate of \[6000\,J{s^{ - 1}}\] then find the temperature difference if \[K = 200J{m^{ - 1}}{K^{ - 1}}\].
A. \[{20^0}C\]
B. \[{40^0}C\]
C. \[{80^0}C\]
D. \[{100^0}C\]
Answer
219.9k+ views
Hint:In order to solve this problem we need to understand the rate of heat transfer. The rate of flow of heat is the amount of heat that is transferred per unit of time. Here, using the formula for heat flow we are going to find the solution for the temperature difference.
Formula Used:
To find the heat flow rate the formula is given as,
\[\dfrac{Q}{t} = KA\dfrac{{\Delta T}}{L}\]
Where,
A is cross-sectional area of a body
\[\Delta T\] is temperature difference between two ends of a body
L is length of a body
K is thermal conductivity of a body
Complete step by step solution:
Consider a body of length, \[l = 1m\]having a cross-sectional area of\[A = 0.75\,{m^2}\]. It has a heat flow through it at the rate of \[\dfrac{Q}{t} = 6000\,J{s^{ - 1}}\] then we need to find the temperature difference if \[K = 200\,J{m^{ - 1}}{K^{ - 1}}\].
The rate of flow of heat is,
\[\dfrac{Q}{t} = KA\dfrac{{\Delta T}}{L}\]
Rewrite the equation for \[\Delta T\] we obtain,
\[\Delta T = \left( {\dfrac{Q}{t}} \right)\dfrac{L}{{KA}}\]
Substitute the values of length, rate of heat flow, area, and thermal conductivity in the above equation, then we obtain as follows,
\[\Delta T = 6000 \times \dfrac{1}{{200 \times 0.75}}\]
\[\therefore \Delta T = {40^0}C\]
Therefore, the temperature difference of a body is found to be \[{40^0}C\].
Hence, option B is the correct answer.
Note:Here, in this question, we found the temperature difference using the equation for the heat flow as discussed above. Temperature difference will be obtained by subtracting two different isolated temperature readings, or by measuring the amount of rise of temperature or the fall of the temperature.
Formula Used:
To find the heat flow rate the formula is given as,
\[\dfrac{Q}{t} = KA\dfrac{{\Delta T}}{L}\]
Where,
A is cross-sectional area of a body
\[\Delta T\] is temperature difference between two ends of a body
L is length of a body
K is thermal conductivity of a body
Complete step by step solution:
Consider a body of length, \[l = 1m\]having a cross-sectional area of\[A = 0.75\,{m^2}\]. It has a heat flow through it at the rate of \[\dfrac{Q}{t} = 6000\,J{s^{ - 1}}\] then we need to find the temperature difference if \[K = 200\,J{m^{ - 1}}{K^{ - 1}}\].
The rate of flow of heat is,
\[\dfrac{Q}{t} = KA\dfrac{{\Delta T}}{L}\]
Rewrite the equation for \[\Delta T\] we obtain,
\[\Delta T = \left( {\dfrac{Q}{t}} \right)\dfrac{L}{{KA}}\]
Substitute the values of length, rate of heat flow, area, and thermal conductivity in the above equation, then we obtain as follows,
\[\Delta T = 6000 \times \dfrac{1}{{200 \times 0.75}}\]
\[\therefore \Delta T = {40^0}C\]
Therefore, the temperature difference of a body is found to be \[{40^0}C\].
Hence, option B is the correct answer.
Note:Here, in this question, we found the temperature difference using the equation for the heat flow as discussed above. Temperature difference will be obtained by subtracting two different isolated temperature readings, or by measuring the amount of rise of temperature or the fall of the temperature.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

