
A body moving with uniform acceleration in a straight line describes 25 m in \[{5^{th}}\] second and 33 m in \[{7^{th}}\] second. Find its initial velocity and acceleration.
Answer
232.8k+ views
Hint: If the body is moving at a constant acceleration and doesn’t change directions during the nth second, then we can use some special equations for kinematics to calculate the “displacement” which will equal the “distance travelled” only if the direction does not change and the formula is:
${S_n} = u + \dfrac{a}{2}(2n - 1)$
Where,
u = Initial velocity of the object.
a = Initial acceleration of the object.
Complete step by step answer:
We know that distance travelled in the nth second is given by:
${S_n} = u + \dfrac{a}{2}(2n - 1)$
Where,
u = Initial velocity of the object.
a = Acceleration of the particle.
It is given that at \[{5^{th}}\] second the object travelled 22 m.
Then,
$ \Rightarrow {S_5} = u + \dfrac{a}{2}(2\left( 5 \right) - 1)$
\[ \Rightarrow 25 = u + \dfrac{{9a}}{2}\] … (i)
Similarly, the distance travelled in \[{7^{th}}\] second is 33 m. Then,
$ \Rightarrow {S_7} = u + \dfrac{a}{2}(2\left( 7 \right) - 1)$
$ \Rightarrow 33 = u + \dfrac{{13a}}{2}$ … (2)
On solving equation (1) and equation (2):
Subtracting eq. (1) in eq. (2) i.e., (2) – (1)
$ \Rightarrow 33 - 25 = \dfrac{a}{2}\left( {13 - 9} \right)$
$ \Rightarrow 8 = \dfrac{a}{2}\left( 4 \right)$
$ \Rightarrow a = 4\dfrac{m}{{{s^2}}}$
Therefore, the particle was moving an initial acceleration of $4\dfrac{m}{{{s^2}}}$
Substituting value of ‘a’ in equation (1) and simplifying:
\[ \Rightarrow 25 = u + \dfrac{{9 \times 4}}{2}\]
\[ \Rightarrow u = 25 - 18 = 7\dfrac{m}{s}\]
$ \Rightarrow u = 7\dfrac{m}{s}$
Therefore, the particle was moving with an initial velocity of $u = 7\dfrac{m}{s}$ .
Hence, initial velocity and acceleration of the particle is $7\dfrac{m}{s}$ and $4\dfrac{m}{{{s^2}}}$ .
Note:
One should remember that the above approach is valid if and only if the object is moving with “constant acceleration” and the displacement is taking place along the “same direction”. If the direction of displacements are different then we cannot proceed with this method.
${S_n} = u + \dfrac{a}{2}(2n - 1)$
Where,
u = Initial velocity of the object.
a = Initial acceleration of the object.
Complete step by step answer:
We know that distance travelled in the nth second is given by:
${S_n} = u + \dfrac{a}{2}(2n - 1)$
Where,
u = Initial velocity of the object.
a = Acceleration of the particle.
It is given that at \[{5^{th}}\] second the object travelled 22 m.
Then,
$ \Rightarrow {S_5} = u + \dfrac{a}{2}(2\left( 5 \right) - 1)$
\[ \Rightarrow 25 = u + \dfrac{{9a}}{2}\] … (i)
Similarly, the distance travelled in \[{7^{th}}\] second is 33 m. Then,
$ \Rightarrow {S_7} = u + \dfrac{a}{2}(2\left( 7 \right) - 1)$
$ \Rightarrow 33 = u + \dfrac{{13a}}{2}$ … (2)
On solving equation (1) and equation (2):
Subtracting eq. (1) in eq. (2) i.e., (2) – (1)
$ \Rightarrow 33 - 25 = \dfrac{a}{2}\left( {13 - 9} \right)$
$ \Rightarrow 8 = \dfrac{a}{2}\left( 4 \right)$
$ \Rightarrow a = 4\dfrac{m}{{{s^2}}}$
Therefore, the particle was moving an initial acceleration of $4\dfrac{m}{{{s^2}}}$
Substituting value of ‘a’ in equation (1) and simplifying:
\[ \Rightarrow 25 = u + \dfrac{{9 \times 4}}{2}\]
\[ \Rightarrow u = 25 - 18 = 7\dfrac{m}{s}\]
$ \Rightarrow u = 7\dfrac{m}{s}$
Therefore, the particle was moving with an initial velocity of $u = 7\dfrac{m}{s}$ .
Hence, initial velocity and acceleration of the particle is $7\dfrac{m}{s}$ and $4\dfrac{m}{{{s^2}}}$ .
Note:
One should remember that the above approach is valid if and only if the object is moving with “constant acceleration” and the displacement is taking place along the “same direction”. If the direction of displacements are different then we cannot proceed with this method.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

