
A body moving with uniform acceleration in a straight line describes 25 m in \[{5^{th}}\] second and 33 m in \[{7^{th}}\] second. Find its initial velocity and acceleration.
Answer
217.5k+ views
Hint: If the body is moving at a constant acceleration and doesn’t change directions during the nth second, then we can use some special equations for kinematics to calculate the “displacement” which will equal the “distance travelled” only if the direction does not change and the formula is:
${S_n} = u + \dfrac{a}{2}(2n - 1)$
Where,
u = Initial velocity of the object.
a = Initial acceleration of the object.
Complete step by step answer:
We know that distance travelled in the nth second is given by:
${S_n} = u + \dfrac{a}{2}(2n - 1)$
Where,
u = Initial velocity of the object.
a = Acceleration of the particle.
It is given that at \[{5^{th}}\] second the object travelled 22 m.
Then,
$ \Rightarrow {S_5} = u + \dfrac{a}{2}(2\left( 5 \right) - 1)$
\[ \Rightarrow 25 = u + \dfrac{{9a}}{2}\] … (i)
Similarly, the distance travelled in \[{7^{th}}\] second is 33 m. Then,
$ \Rightarrow {S_7} = u + \dfrac{a}{2}(2\left( 7 \right) - 1)$
$ \Rightarrow 33 = u + \dfrac{{13a}}{2}$ … (2)
On solving equation (1) and equation (2):
Subtracting eq. (1) in eq. (2) i.e., (2) – (1)
$ \Rightarrow 33 - 25 = \dfrac{a}{2}\left( {13 - 9} \right)$
$ \Rightarrow 8 = \dfrac{a}{2}\left( 4 \right)$
$ \Rightarrow a = 4\dfrac{m}{{{s^2}}}$
Therefore, the particle was moving an initial acceleration of $4\dfrac{m}{{{s^2}}}$
Substituting value of ‘a’ in equation (1) and simplifying:
\[ \Rightarrow 25 = u + \dfrac{{9 \times 4}}{2}\]
\[ \Rightarrow u = 25 - 18 = 7\dfrac{m}{s}\]
$ \Rightarrow u = 7\dfrac{m}{s}$
Therefore, the particle was moving with an initial velocity of $u = 7\dfrac{m}{s}$ .
Hence, initial velocity and acceleration of the particle is $7\dfrac{m}{s}$ and $4\dfrac{m}{{{s^2}}}$ .
Note:
One should remember that the above approach is valid if and only if the object is moving with “constant acceleration” and the displacement is taking place along the “same direction”. If the direction of displacements are different then we cannot proceed with this method.
${S_n} = u + \dfrac{a}{2}(2n - 1)$
Where,
u = Initial velocity of the object.
a = Initial acceleration of the object.
Complete step by step answer:
We know that distance travelled in the nth second is given by:
${S_n} = u + \dfrac{a}{2}(2n - 1)$
Where,
u = Initial velocity of the object.
a = Acceleration of the particle.
It is given that at \[{5^{th}}\] second the object travelled 22 m.
Then,
$ \Rightarrow {S_5} = u + \dfrac{a}{2}(2\left( 5 \right) - 1)$
\[ \Rightarrow 25 = u + \dfrac{{9a}}{2}\] … (i)
Similarly, the distance travelled in \[{7^{th}}\] second is 33 m. Then,
$ \Rightarrow {S_7} = u + \dfrac{a}{2}(2\left( 7 \right) - 1)$
$ \Rightarrow 33 = u + \dfrac{{13a}}{2}$ … (2)
On solving equation (1) and equation (2):
Subtracting eq. (1) in eq. (2) i.e., (2) – (1)
$ \Rightarrow 33 - 25 = \dfrac{a}{2}\left( {13 - 9} \right)$
$ \Rightarrow 8 = \dfrac{a}{2}\left( 4 \right)$
$ \Rightarrow a = 4\dfrac{m}{{{s^2}}}$
Therefore, the particle was moving an initial acceleration of $4\dfrac{m}{{{s^2}}}$
Substituting value of ‘a’ in equation (1) and simplifying:
\[ \Rightarrow 25 = u + \dfrac{{9 \times 4}}{2}\]
\[ \Rightarrow u = 25 - 18 = 7\dfrac{m}{s}\]
$ \Rightarrow u = 7\dfrac{m}{s}$
Therefore, the particle was moving with an initial velocity of $u = 7\dfrac{m}{s}$ .
Hence, initial velocity and acceleration of the particle is $7\dfrac{m}{s}$ and $4\dfrac{m}{{{s^2}}}$ .
Note:
One should remember that the above approach is valid if and only if the object is moving with “constant acceleration” and the displacement is taking place along the “same direction”. If the direction of displacements are different then we cannot proceed with this method.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

