
A body cools from a temperature $3T$ to $2T$ in 10 minutes. The room temperature is $T$. Assume that Newton's law of cooling is applicable. The temperature of the body at the end of next 10 minutes will be:
(A) $\dfrac{7}{4}T$
(B) $\dfrac{3}{2}T$
(C) $\dfrac{4}{3}T$
(D) $T$
Answer
219k+ views
Hint: To find the temperature of the body which is cooling with time we use Newton’s law of cooling. We have to assume that the temperature of the surroundings is constant. The body cools down by radiating out the heat energy contained in it.
Formula Used:
The formulae used in the solution are given here.
$\dfrac{{dT}}{{dt}} = k\left( {{T_t} - {T_s}} \right)$ where $k$ is Newton’s cooling constant, ${T_t}$ is the temperature of the body at any time $t$, ${T_s}$ is the temperature of the surrounding.
Complete Step by Step Solution: Newton’s law of cooling describes the rate at which an exposed body changes temperature through radiation which is approximately proportional to the difference between the object’s temperature and its surroundings, provided the difference is small.
According to Newton’s law of cooling, the rate of loss of heat from a body is directly proportional to the difference in the temperature of the body and its surroundings.
$\dfrac{{dT}}{{dt}} = k\left( {{T_t} - {T_s}} \right)$ where $k$ is Newton’s cooling constant, ${T_t}$ is the temperature of the body at any time $t$, ${T_s}$ is the temperature of the surrounding.
On simplifying this law, we get,
$\ln \left( {\dfrac{{{T_2} - {T_1}}}{{{T_1} - T}}} \right) = kt$
It has been given that a body cools from a temperature $3T$ to $2T$ in 10 minutes, when the room temperature is $T$ and Newton's law of cooling is applicable.
For the first 10 minutes,
$\ln \left( {\dfrac{{3T - {T_s}}}{{2T - T}}} \right) = k\left( {10} \right)$
$ \Rightarrow \ln \dfrac{{2T}}{T} = 10k$
Thus, we can write, $\ln 2 = 10k$.—(i)
For the next 10 minutes,
Let the temperature at the end of 10 minutes be $T'$.
$\ln \left( {\dfrac{{2T - {T_s}}}{{T' - T}}} \right) = 10k$
$ \Rightarrow \ln \left( {\dfrac{T}{{T' - T}}} \right) = 10k$-(ii)
Dividing equation (i) by (ii),
$\ln 2 = \ln \left( {\dfrac{T}{{T' - T}}} \right)$
$\dfrac{{\ln 2}}{{\ln \left( {\dfrac{T}{{T' - T}}} \right)}} = \dfrac{{10k}}{{10k}}$
On simplification, we get,
$\dfrac{T}{{T' - T}} = 2$
$ \Rightarrow 2T' = T + 2T = 3T$
The solution of this equation will give us the temperature at the end of 10 minutes, $T' = \dfrac{3}{2}T$.
Hence, the correct answer is Option B.
Note: The limitations of Newton’s Law of Cooling are stated below-
1. The difference in temperature between the body and surroundings must be small.
2. The loss of heat from the body should be by radiation only.
3. The major limitation of Newton’s law of cooling is that the temperature of surroundings must remain constant during the cooling of the body.
Formula Used:
The formulae used in the solution are given here.
$\dfrac{{dT}}{{dt}} = k\left( {{T_t} - {T_s}} \right)$ where $k$ is Newton’s cooling constant, ${T_t}$ is the temperature of the body at any time $t$, ${T_s}$ is the temperature of the surrounding.
Complete Step by Step Solution: Newton’s law of cooling describes the rate at which an exposed body changes temperature through radiation which is approximately proportional to the difference between the object’s temperature and its surroundings, provided the difference is small.
According to Newton’s law of cooling, the rate of loss of heat from a body is directly proportional to the difference in the temperature of the body and its surroundings.
$\dfrac{{dT}}{{dt}} = k\left( {{T_t} - {T_s}} \right)$ where $k$ is Newton’s cooling constant, ${T_t}$ is the temperature of the body at any time $t$, ${T_s}$ is the temperature of the surrounding.
On simplifying this law, we get,
$\ln \left( {\dfrac{{{T_2} - {T_1}}}{{{T_1} - T}}} \right) = kt$
It has been given that a body cools from a temperature $3T$ to $2T$ in 10 minutes, when the room temperature is $T$ and Newton's law of cooling is applicable.
For the first 10 minutes,
$\ln \left( {\dfrac{{3T - {T_s}}}{{2T - T}}} \right) = k\left( {10} \right)$
$ \Rightarrow \ln \dfrac{{2T}}{T} = 10k$
Thus, we can write, $\ln 2 = 10k$.—(i)
For the next 10 minutes,
Let the temperature at the end of 10 minutes be $T'$.
$\ln \left( {\dfrac{{2T - {T_s}}}{{T' - T}}} \right) = 10k$
$ \Rightarrow \ln \left( {\dfrac{T}{{T' - T}}} \right) = 10k$-(ii)
Dividing equation (i) by (ii),
$\ln 2 = \ln \left( {\dfrac{T}{{T' - T}}} \right)$
$\dfrac{{\ln 2}}{{\ln \left( {\dfrac{T}{{T' - T}}} \right)}} = \dfrac{{10k}}{{10k}}$
On simplification, we get,
$\dfrac{T}{{T' - T}} = 2$
$ \Rightarrow 2T' = T + 2T = 3T$
The solution of this equation will give us the temperature at the end of 10 minutes, $T' = \dfrac{3}{2}T$.
Hence, the correct answer is Option B.
Note: The limitations of Newton’s Law of Cooling are stated below-
1. The difference in temperature between the body and surroundings must be small.
2. The loss of heat from the body should be by radiation only.
3. The major limitation of Newton’s law of cooling is that the temperature of surroundings must remain constant during the cooling of the body.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

