
A body cools from \[{60^o}C\] to ${50^o}C$ in 5 minutes. If the temperature of the surrounding is ${30^o}C$ calculate the time period required by the body to cool to ${40^o}C$ .
(A) 8.33 min
(B) 5 min
(C) 8.9 min
(D) Less than 5 min
Answer
232.8k+ views
Hint Apply Newton’s Law of Cooling and find out the value of temperature changing coefficient for the first case of cooling. Newton’s law of cooling is used to calculate the value of the rate of change of temperature. Now use this value of temperature changing coefficient to find out the value of the time required for the body to cool down in the second case.
Formula used: $\dfrac{{dT}}{{dt}} = K\left[ {\dfrac{{\left( {{T_i} + {T_f}} \right)}}{2} - {T_o}} \right]$
Complete Step by step solution
Here we will use Newton’s Law of Cooling,
where rate of cooling, $\dfrac{{dT}}{{dt}} = K\left[ {\dfrac{{\left( {{T_i} + {T_f}} \right)}}{2} - {T_o}} \right]$.
Here,$t$ is the time taken,
$K$is the temperature changing coefficient,
${T_i}$ is the initial temperature,
${T_f}$ is the final temperature, and
${T_o}$ is the temperature of the surroundings.
For the first case,
${T_i} = {60^o}C,{T_f} = {50^o}C,{T_o} = {30^o}C,dt = 5\min $
Let us substitute these values in the above equation.
$\therefore \dfrac{{\left( {60 - 50} \right)}}{5} = K\left[ {\dfrac{{60 + 50}}{2} - 30} \right]$
$ \Rightarrow \dfrac{{10}}{5} = K\left[ {\dfrac{{110}}{2} - 30} \right]$
$ \therefore 2 = K(55 - 30)$
On further simplifying the equation we get,
$ \Rightarrow 2 = K25$
$ \therefore K = \dfrac{2}{{25}}$
In the second case we have the values as:
Initial temperature, ${T_i} = {50^o}C,$
Final temperature, ${T_f} = {40^o}C,$
Surrounding temperature, ${T_0} = {30^o}C,$
Temperature changing coefficient as found out from the first case, $K = \dfrac{2}{{25}}$
Substituting these values in the equation of Newton’s Law of Cooling we get,
$\dfrac{{\left( {50 - 40} \right)}}{{dt}} = \dfrac{2}{{25}}\left[ {\dfrac{{\left( {50 + 40} \right)}}{2} - 30} \right]$
$ \Rightarrow \dfrac{{10}}{{dt}} = \dfrac{2}{{25}}\left( {\dfrac{{90}}{2} - 30} \right)$
$ \Rightarrow \dfrac{{10}}{{dt}} = \dfrac{2}{{25}}\left( {45 - 30} \right)$
On further simplifying the equation we get,
$ \Rightarrow \dfrac{{10}}{{dt}} = \dfrac{2}{{25}}\left( {15} \right)$
$ \therefore dt = \dfrac{{25}}{3} = 8.33$
Therefore the time taken for the body to cool down from ${50^o}C$ to ${40^o}C$ , with a surrounding temperature of ${30^o}C$ is 8.33 minutes.
Hence option A. is the correct answer.
Note
We should be careful of the fact that the question mentions the cool down of the body from ${60^o}C$to ${50^o}C$ in the first case, and then further the body is cooled down from ${50^o}C$ to ${40^o}C$. Different ranges of temperature difference would yield different results. The unit of temperature cooling coefficient is ${s^{ - 1}}$ , hence we can see that the time taken is dependent on the temperature cooling coefficient.
Formula used: $\dfrac{{dT}}{{dt}} = K\left[ {\dfrac{{\left( {{T_i} + {T_f}} \right)}}{2} - {T_o}} \right]$
Complete Step by step solution
Here we will use Newton’s Law of Cooling,
where rate of cooling, $\dfrac{{dT}}{{dt}} = K\left[ {\dfrac{{\left( {{T_i} + {T_f}} \right)}}{2} - {T_o}} \right]$.
Here,$t$ is the time taken,
$K$is the temperature changing coefficient,
${T_i}$ is the initial temperature,
${T_f}$ is the final temperature, and
${T_o}$ is the temperature of the surroundings.
For the first case,
${T_i} = {60^o}C,{T_f} = {50^o}C,{T_o} = {30^o}C,dt = 5\min $
Let us substitute these values in the above equation.
$\therefore \dfrac{{\left( {60 - 50} \right)}}{5} = K\left[ {\dfrac{{60 + 50}}{2} - 30} \right]$
$ \Rightarrow \dfrac{{10}}{5} = K\left[ {\dfrac{{110}}{2} - 30} \right]$
$ \therefore 2 = K(55 - 30)$
On further simplifying the equation we get,
$ \Rightarrow 2 = K25$
$ \therefore K = \dfrac{2}{{25}}$
In the second case we have the values as:
Initial temperature, ${T_i} = {50^o}C,$
Final temperature, ${T_f} = {40^o}C,$
Surrounding temperature, ${T_0} = {30^o}C,$
Temperature changing coefficient as found out from the first case, $K = \dfrac{2}{{25}}$
Substituting these values in the equation of Newton’s Law of Cooling we get,
$\dfrac{{\left( {50 - 40} \right)}}{{dt}} = \dfrac{2}{{25}}\left[ {\dfrac{{\left( {50 + 40} \right)}}{2} - 30} \right]$
$ \Rightarrow \dfrac{{10}}{{dt}} = \dfrac{2}{{25}}\left( {\dfrac{{90}}{2} - 30} \right)$
$ \Rightarrow \dfrac{{10}}{{dt}} = \dfrac{2}{{25}}\left( {45 - 30} \right)$
On further simplifying the equation we get,
$ \Rightarrow \dfrac{{10}}{{dt}} = \dfrac{2}{{25}}\left( {15} \right)$
$ \therefore dt = \dfrac{{25}}{3} = 8.33$
Therefore the time taken for the body to cool down from ${50^o}C$ to ${40^o}C$ , with a surrounding temperature of ${30^o}C$ is 8.33 minutes.
Hence option A. is the correct answer.
Note
We should be careful of the fact that the question mentions the cool down of the body from ${60^o}C$to ${50^o}C$ in the first case, and then further the body is cooled down from ${50^o}C$ to ${40^o}C$. Different ranges of temperature difference would yield different results. The unit of temperature cooling coefficient is ${s^{ - 1}}$ , hence we can see that the time taken is dependent on the temperature cooling coefficient.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

