
A block of mass m is moved towards a movable wedge of mass M = Km and height h with velocity u (All the surface is smooth). If the block just reaches the top of the wedge, the value u is:

(A) $\sqrt{2gh}$
(B) $\sqrt{\dfrac{2ghK}{1+K}}$
(C) $\sqrt{\dfrac{2gh(1+K)}{K}}$
(D) $\sqrt{2gh\left[ 1-\dfrac{1}{K} \right]}$
Answer
217.8k+ views
Hint: We should know that velocity is defined as the rate change of displacement per unit time. Speed in a specific direction is also known as velocity. Velocity is equal to displacement divided by time. Speed, being a scalar quantity, is the rate at which an object covers distance. The average speed is the distance which is a scalar quantity per time ratio. On the other hand, velocity is a vector quantity; it is direction-aware. An object which moves in the negative direction has a negative velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion in this case. Based on this we have to solve this question.
Complete step by step answer
Lets us let the system move horizontally with velocity v. At the maximum height, the velocity of the block with respect to the wedge is zero but with respect to ground is equal to $\mathrm{v}$ horizontally.
$\mathrm{p}_{\mathrm{i}}=\mathrm{P}_{\mathrm{f}}$
$\mathrm{mu}+0=\mathrm{mv}+\mathrm{Mv}$
$\text{mu}+0=\text{mv}+(\text{Km})\text{v}\Rightarrow \text{v}=\dfrac{\text{u}}{\text{K}+1}$
Also using work-energy theorem we get: ${{\text{W}}_{\text{all forces }}}=\Delta \text{K}.\text{E}$ (with respect to the ground)
$-\mathrm{mgh}=\dfrac{1}{2} \mathrm{Mv}^{2}+\dfrac{1}{2} \mathrm{mv}^{2}-\dfrac{1}{2} \mathrm{mu}^{2}$
$-\mathrm{mgh}=\dfrac{1}{2}(\mathrm{Km}) \times \dfrac{\mathrm{u}^{2}}{(\mathrm{K}+1)^{2}}+\dfrac{1}{2} \mathrm{m} \dfrac{\mathrm{u}^{2}}{(\mathrm{K}+1)^{2}}-\dfrac{1}{2} \mathrm{mu}^{2} \quad$ (using 1)
$\Rightarrow \text{u}=\sqrt{\dfrac{2\text{gh}(\text{K}+1)}{\text{K}}}$
Therefore, the correct answer is Option C.
Note: We should know that if an object's speed or velocity is increasing at a constant rate then we say it has uniform acceleration. The rate of acceleration is constant. If a car speeds up then slows down then speeds up it doesn't have uniform acceleration. The instantaneous acceleration, or simply acceleration, is defined as the limit of the average acceleration when the interval of time considered approaches 0. It is also defined in a similar manner as the derivative of velocity with respect to time. If an object begins acceleration from rest or a standstill, its initial time is 0. If we get a negative value for acceleration, it means the object is slowing down. The acceleration of an object is its change in velocity over an increment of time. This can mean a change in the object's speed or direction. Average acceleration is the change of velocity over a period of time. Constant or uniform acceleration is when the velocity changes the same amount in every equal time period.
Complete step by step answer
Lets us let the system move horizontally with velocity v. At the maximum height, the velocity of the block with respect to the wedge is zero but with respect to ground is equal to $\mathrm{v}$ horizontally.
$\mathrm{p}_{\mathrm{i}}=\mathrm{P}_{\mathrm{f}}$
$\mathrm{mu}+0=\mathrm{mv}+\mathrm{Mv}$
$\text{mu}+0=\text{mv}+(\text{Km})\text{v}\Rightarrow \text{v}=\dfrac{\text{u}}{\text{K}+1}$
Also using work-energy theorem we get: ${{\text{W}}_{\text{all forces }}}=\Delta \text{K}.\text{E}$ (with respect to the ground)
$-\mathrm{mgh}=\dfrac{1}{2} \mathrm{Mv}^{2}+\dfrac{1}{2} \mathrm{mv}^{2}-\dfrac{1}{2} \mathrm{mu}^{2}$
$-\mathrm{mgh}=\dfrac{1}{2}(\mathrm{Km}) \times \dfrac{\mathrm{u}^{2}}{(\mathrm{K}+1)^{2}}+\dfrac{1}{2} \mathrm{m} \dfrac{\mathrm{u}^{2}}{(\mathrm{K}+1)^{2}}-\dfrac{1}{2} \mathrm{mu}^{2} \quad$ (using 1)
$\Rightarrow \text{u}=\sqrt{\dfrac{2\text{gh}(\text{K}+1)}{\text{K}}}$
Therefore, the correct answer is Option C.
Note: We should know that if an object's speed or velocity is increasing at a constant rate then we say it has uniform acceleration. The rate of acceleration is constant. If a car speeds up then slows down then speeds up it doesn't have uniform acceleration. The instantaneous acceleration, or simply acceleration, is defined as the limit of the average acceleration when the interval of time considered approaches 0. It is also defined in a similar manner as the derivative of velocity with respect to time. If an object begins acceleration from rest or a standstill, its initial time is 0. If we get a negative value for acceleration, it means the object is slowing down. The acceleration of an object is its change in velocity over an increment of time. This can mean a change in the object's speed or direction. Average acceleration is the change of velocity over a period of time. Constant or uniform acceleration is when the velocity changes the same amount in every equal time period.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

