Answer
Verified
86.7k+ views
Hint: The amount of energy passing per unit time through a unit area that is perpendicular to the direction in which the sound waves are travelling is known as the sound intensity. Sound intensity can be calculated in units of energy or work.
Useful formula:
The formula for intensity of the sound is;
$I = \dfrac{P}{{4\pi {r^2}}}\,\,$
Where, $I$ denotes the intensity of the sound of the bird, $P$ denotes the power of the intensity of the sound.
Complete step by step solution:
The data given in the problem are;
The intensity of the sound is $10\,\,db$.
Let the initial position be at a ${r_1}$ distance from the bird and the final position ${r_2}$ distance from the bird.
The formula for intensity of the sound is;
${I_1} = \dfrac{P}{{4\pi r_1^2}}\,\,,\,\,{I_2} = \dfrac{P}{{4\pi r_2^2}}$
Where, ${I_1}$ denotes the intensity of the sound at the first distance, ${I_1}$ denotes the intensity of the sound at the sound distance, $P$ denotes the power of the intensity of the sound.
In the decibel form substitute the values given data;
$10\,\,\log \dfrac{{{I_2}}}{{{I_o}}} - 10\,\,\log \dfrac{{{I_1}}}{{{I_o}}} = 10$
Where, ${I_o}$ denotes the total intensity of the sound.
$
10\,\,\log \dfrac{{{I_2}}}{{{I_o}}} - 10\,\,\log \dfrac{{{I_1}}}{{{I_o}}} = 10 \\
\log \,\,\dfrac{{{I_2}}}{{{I_1}}} = 1 \\
\dfrac{{r_1^2}}{{r_2^2}} = 10 \\
{r_1}:{r_2} = \sqrt {10} :1 \\
$
Note: Sound intensity which can also be the acoustic intensity, which can be explained as the power loaded by sound waves per unit area in a side perpendicular to that area. Sound intensity is not the same physical quantity as sound pressure. Human hearing is directly sensitive to sound pressure which is related to sound intensity.
Useful formula:
The formula for intensity of the sound is;
$I = \dfrac{P}{{4\pi {r^2}}}\,\,$
Where, $I$ denotes the intensity of the sound of the bird, $P$ denotes the power of the intensity of the sound.
Complete step by step solution:
The data given in the problem are;
The intensity of the sound is $10\,\,db$.
Let the initial position be at a ${r_1}$ distance from the bird and the final position ${r_2}$ distance from the bird.
The formula for intensity of the sound is;
${I_1} = \dfrac{P}{{4\pi r_1^2}}\,\,,\,\,{I_2} = \dfrac{P}{{4\pi r_2^2}}$
Where, ${I_1}$ denotes the intensity of the sound at the first distance, ${I_1}$ denotes the intensity of the sound at the sound distance, $P$ denotes the power of the intensity of the sound.
In the decibel form substitute the values given data;
$10\,\,\log \dfrac{{{I_2}}}{{{I_o}}} - 10\,\,\log \dfrac{{{I_1}}}{{{I_o}}} = 10$
Where, ${I_o}$ denotes the total intensity of the sound.
$
10\,\,\log \dfrac{{{I_2}}}{{{I_o}}} - 10\,\,\log \dfrac{{{I_1}}}{{{I_o}}} = 10 \\
\log \,\,\dfrac{{{I_2}}}{{{I_1}}} = 1 \\
\dfrac{{r_1^2}}{{r_2^2}} = 10 \\
{r_1}:{r_2} = \sqrt {10} :1 \\
$
Note: Sound intensity which can also be the acoustic intensity, which can be explained as the power loaded by sound waves per unit area in a side perpendicular to that area. Sound intensity is not the same physical quantity as sound pressure. Human hearing is directly sensitive to sound pressure which is related to sound intensity.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main