
A beam of light of wavelength 400nm and power 1.55mW is directed at the cathode of a photoelectric cell. If only $10\% $ of the incident photons effectively produce a photoelectron, then find current due to these electrons. (Given $hc = 1240eV - nm$,$e = 1.6 \times {10^{ - 19}}C$
(A) $5\mu A$
(B) $40\mu A$
(C) $50\mu A$
(D) $11.4\mu A$
Answer
221.1k+ views
Hint: The energy of an incident photon is given by the expression, $E = \dfrac{{hc}}{\lambda }$. This value gives the number of electrons photons which can be produced per second, which also gives the number of electrons emitted per second. This can be further used to calculate the value of photocurrent by the relation $I = e \times n$.
Formula used:
$E = \dfrac{{hc}}{\lambda }$
$\dfrac{c}{\lambda } = \upsilon $
$P = nE$
$I = e \times n$
Where, E is the energy of an incident photon
h is the Planck’s constant which is equal to $6.62 \times {10^{ - 34}}{m^2}kg/s$
c is the speed of light which is equal to $3 \times {10^8}m/s$
$\lambda $ is the wavelength of electromagnetic wave used
$\upsilon $ is the frequency
$e$ is the charge on electron which is equal to $1.6 \times {10^{ - 19}}C$
$I$ is the value of photocurrent.
P is the power
n is the number of photons produced per second
Step by step answer
During the photoelectric effect, the photon strikes the atom with an energy E which is a function of its frequency.
$E = h\upsilon $
Since in the question, frequency is not given, the term $\dfrac{c}{\lambda } = \upsilon $ is used.
So the energy of the photon,
$E = \dfrac{{hc}}{\lambda }$
The value of hc is given $1240eV$
We know that $1eV = 1.6 \times {10^{ - 19}}J$
Therefore,
$hc = 1240 \times 1.6 \times {10^{ - 19}}J - nm$
($nm$refers to nanometers)
$hc = 1984 \times {10^{ - 19}}J - nm$
$E = \dfrac{{hc}}{\lambda } = \dfrac{{1984 \times {{10}^{ - 19}}J - nm}}{{400nm}} = 4.96 \times {10^{ - 19}}J$
Therefore the number of the photons is given by-
$n = \dfrac{P}{E}$
Where P is the power given in the question as, $1.55mW$
Writing in SI units-
$n = \dfrac{{1.55 \times {{10}^{ - 3}}}}{{4.96 \times {{10}^{ - 19}}}} = 3.125 \times {10^{15}}$
Number of photons used to produce the photoelectric current are only $10\% $so,
$n = 3.125 \times {10^{15}} \times \dfrac{{10}}{{100}}{s^{ - 1}}$
$n = 3.125 \times {10^{14}}$
This also the number of electrons which produce current,
Now the photocurrent ‘I’ can be calculated as-
$I = e \times n$
Given, $e = 1.6 \times {10^{ - 19}}C$
$I = 1.6 \times 3.125 \times {10^{14}} \times {10^{ - 19}}$
$I = 5 \times {10^{ - 5}}A$
$I = 50 \times {10^{ - 6}}A
Therefore option (c) is correct.
Note: The energy of a photon can be written as a function of its wavelength but it is not the ideal expression because the wavelength of the light can be changed. When the light passes through a medium, its speed decreases significantly, as the frequency of the light remains constant, its wavelength changes. Similar effect occurs in the Doppler effect as well, where red-shift (increase in wavelength) and blue-shift (decrease in wavelength) is observed.
Formula used:
$E = \dfrac{{hc}}{\lambda }$
$\dfrac{c}{\lambda } = \upsilon $
$P = nE$
$I = e \times n$
Where, E is the energy of an incident photon
h is the Planck’s constant which is equal to $6.62 \times {10^{ - 34}}{m^2}kg/s$
c is the speed of light which is equal to $3 \times {10^8}m/s$
$\lambda $ is the wavelength of electromagnetic wave used
$\upsilon $ is the frequency
$e$ is the charge on electron which is equal to $1.6 \times {10^{ - 19}}C$
$I$ is the value of photocurrent.
P is the power
n is the number of photons produced per second
Step by step answer
During the photoelectric effect, the photon strikes the atom with an energy E which is a function of its frequency.
$E = h\upsilon $
Since in the question, frequency is not given, the term $\dfrac{c}{\lambda } = \upsilon $ is used.
So the energy of the photon,
$E = \dfrac{{hc}}{\lambda }$
The value of hc is given $1240eV$
We know that $1eV = 1.6 \times {10^{ - 19}}J$
Therefore,
$hc = 1240 \times 1.6 \times {10^{ - 19}}J - nm$
($nm$refers to nanometers)
$hc = 1984 \times {10^{ - 19}}J - nm$
$E = \dfrac{{hc}}{\lambda } = \dfrac{{1984 \times {{10}^{ - 19}}J - nm}}{{400nm}} = 4.96 \times {10^{ - 19}}J$
Therefore the number of the photons is given by-
$n = \dfrac{P}{E}$
Where P is the power given in the question as, $1.55mW$
Writing in SI units-
$n = \dfrac{{1.55 \times {{10}^{ - 3}}}}{{4.96 \times {{10}^{ - 19}}}} = 3.125 \times {10^{15}}$
Number of photons used to produce the photoelectric current are only $10\% $so,
$n = 3.125 \times {10^{15}} \times \dfrac{{10}}{{100}}{s^{ - 1}}$
$n = 3.125 \times {10^{14}}$
This also the number of electrons which produce current,
Now the photocurrent ‘I’ can be calculated as-
$I = e \times n$
Given, $e = 1.6 \times {10^{ - 19}}C$
$I = 1.6 \times 3.125 \times {10^{14}} \times {10^{ - 19}}$
$I = 5 \times {10^{ - 5}}A$
$I = 50 \times {10^{ - 6}}A
Therefore option (c) is correct.
Note: The energy of a photon can be written as a function of its wavelength but it is not the ideal expression because the wavelength of the light can be changed. When the light passes through a medium, its speed decreases significantly, as the frequency of the light remains constant, its wavelength changes. Similar effect occurs in the Doppler effect as well, where red-shift (increase in wavelength) and blue-shift (decrease in wavelength) is observed.
Recently Updated Pages
[Awaiting input: Please provide the content from "Ask AI Response," "Competitor 1," and "Competitor 2," so I can perform the analysis and synthesize the requested metadata and headings.]

Young’s Double Slit Experiment Derivation Explained

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

Essential Derivations for CBSE Class 12 Physics: Stepwise & PDF Solutions

