
A beam of light of wavelength 400nm and power 1.55mW is directed at the cathode of a photoelectric cell. If only $10\% $ of the incident photons effectively produce a photoelectron, then find current due to these electrons. (Given $hc = 1240eV - nm$,$e = 1.6 \times {10^{ - 19}}C$
(A) $5\mu A$
(B) $40\mu A$
(C) $50\mu A$
(D) $11.4\mu A$
Answer
224.1k+ views
Hint: The energy of an incident photon is given by the expression, $E = \dfrac{{hc}}{\lambda }$. This value gives the number of electrons photons which can be produced per second, which also gives the number of electrons emitted per second. This can be further used to calculate the value of photocurrent by the relation $I = e \times n$.
Formula used:
$E = \dfrac{{hc}}{\lambda }$
$\dfrac{c}{\lambda } = \upsilon $
$P = nE$
$I = e \times n$
Where, E is the energy of an incident photon
h is the Planck’s constant which is equal to $6.62 \times {10^{ - 34}}{m^2}kg/s$
c is the speed of light which is equal to $3 \times {10^8}m/s$
$\lambda $ is the wavelength of electromagnetic wave used
$\upsilon $ is the frequency
$e$ is the charge on electron which is equal to $1.6 \times {10^{ - 19}}C$
$I$ is the value of photocurrent.
P is the power
n is the number of photons produced per second
Step by step answer
During the photoelectric effect, the photon strikes the atom with an energy E which is a function of its frequency.
$E = h\upsilon $
Since in the question, frequency is not given, the term $\dfrac{c}{\lambda } = \upsilon $ is used.
So the energy of the photon,
$E = \dfrac{{hc}}{\lambda }$
The value of hc is given $1240eV$
We know that $1eV = 1.6 \times {10^{ - 19}}J$
Therefore,
$hc = 1240 \times 1.6 \times {10^{ - 19}}J - nm$
($nm$refers to nanometers)
$hc = 1984 \times {10^{ - 19}}J - nm$
$E = \dfrac{{hc}}{\lambda } = \dfrac{{1984 \times {{10}^{ - 19}}J - nm}}{{400nm}} = 4.96 \times {10^{ - 19}}J$
Therefore the number of the photons is given by-
$n = \dfrac{P}{E}$
Where P is the power given in the question as, $1.55mW$
Writing in SI units-
$n = \dfrac{{1.55 \times {{10}^{ - 3}}}}{{4.96 \times {{10}^{ - 19}}}} = 3.125 \times {10^{15}}$
Number of photons used to produce the photoelectric current are only $10\% $so,
$n = 3.125 \times {10^{15}} \times \dfrac{{10}}{{100}}{s^{ - 1}}$
$n = 3.125 \times {10^{14}}$
This also the number of electrons which produce current,
Now the photocurrent ‘I’ can be calculated as-
$I = e \times n$
Given, $e = 1.6 \times {10^{ - 19}}C$
$I = 1.6 \times 3.125 \times {10^{14}} \times {10^{ - 19}}$
$I = 5 \times {10^{ - 5}}A$
$I = 50 \times {10^{ - 6}}A
Therefore option (c) is correct.
Note: The energy of a photon can be written as a function of its wavelength but it is not the ideal expression because the wavelength of the light can be changed. When the light passes through a medium, its speed decreases significantly, as the frequency of the light remains constant, its wavelength changes. Similar effect occurs in the Doppler effect as well, where red-shift (increase in wavelength) and blue-shift (decrease in wavelength) is observed.
Formula used:
$E = \dfrac{{hc}}{\lambda }$
$\dfrac{c}{\lambda } = \upsilon $
$P = nE$
$I = e \times n$
Where, E is the energy of an incident photon
h is the Planck’s constant which is equal to $6.62 \times {10^{ - 34}}{m^2}kg/s$
c is the speed of light which is equal to $3 \times {10^8}m/s$
$\lambda $ is the wavelength of electromagnetic wave used
$\upsilon $ is the frequency
$e$ is the charge on electron which is equal to $1.6 \times {10^{ - 19}}C$
$I$ is the value of photocurrent.
P is the power
n is the number of photons produced per second
Step by step answer
During the photoelectric effect, the photon strikes the atom with an energy E which is a function of its frequency.
$E = h\upsilon $
Since in the question, frequency is not given, the term $\dfrac{c}{\lambda } = \upsilon $ is used.
So the energy of the photon,
$E = \dfrac{{hc}}{\lambda }$
The value of hc is given $1240eV$
We know that $1eV = 1.6 \times {10^{ - 19}}J$
Therefore,
$hc = 1240 \times 1.6 \times {10^{ - 19}}J - nm$
($nm$refers to nanometers)
$hc = 1984 \times {10^{ - 19}}J - nm$
$E = \dfrac{{hc}}{\lambda } = \dfrac{{1984 \times {{10}^{ - 19}}J - nm}}{{400nm}} = 4.96 \times {10^{ - 19}}J$
Therefore the number of the photons is given by-
$n = \dfrac{P}{E}$
Where P is the power given in the question as, $1.55mW$
Writing in SI units-
$n = \dfrac{{1.55 \times {{10}^{ - 3}}}}{{4.96 \times {{10}^{ - 19}}}} = 3.125 \times {10^{15}}$
Number of photons used to produce the photoelectric current are only $10\% $so,
$n = 3.125 \times {10^{15}} \times \dfrac{{10}}{{100}}{s^{ - 1}}$
$n = 3.125 \times {10^{14}}$
This also the number of electrons which produce current,
Now the photocurrent ‘I’ can be calculated as-
$I = e \times n$
Given, $e = 1.6 \times {10^{ - 19}}C$
$I = 1.6 \times 3.125 \times {10^{14}} \times {10^{ - 19}}$
$I = 5 \times {10^{ - 5}}A$
$I = 50 \times {10^{ - 6}}A
Therefore option (c) is correct.
Note: The energy of a photon can be written as a function of its wavelength but it is not the ideal expression because the wavelength of the light can be changed. When the light passes through a medium, its speed decreases significantly, as the frequency of the light remains constant, its wavelength changes. Similar effect occurs in the Doppler effect as well, where red-shift (increase in wavelength) and blue-shift (decrease in wavelength) is observed.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: City Intimation Slip Releasing Today, Application Form Closed, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Electromagnetic Waves and Their Importance

Understanding Atomic Structure for Beginners

