
A bead of mass m is located on a parabolic wire with its axis vertical and vertex directed towards as shown in the figure and whose equation is ${x^2} = ay$. If the coefficient of friction is $\mu $, the maximum height above the x-axis at which the particle will be in equilibrium is:

A) $\mu a$
B) ${\mu ^2}a$
C) $\dfrac{{{\mu ^2}a}}{4}$
D) $\dfrac{{\mu a}}{2}$
Answer
207.6k+ views
Hint: The coefficient of friction can be calculated and expressed in terms of the equation of motion. This can be done by drawing the free-body diagram of the bead and computing the forces acting on the bead when it is in motion along the curve.
Complete step by step answer:
Friction is a force that resists the relative motion between two solid surfaces, fluid layers, or material elements moving against one another. The frictional force acting on the body is dependent on the normal force acted upon by the surface on the body.
Frictional force,
$F \propto N$
By removing the constant of proportionality, we have –
$F = \mu N$
where $\mu = $coefficient of friction of the surface.
Consider a bead moving on the parabolic wire of equation ${x^2} = ay$ as shown.

The forces act alongside the tangent drawn on the curve at the point where mass m is situated. The forces acting on the bead are:
i) Weight mg whose component $mg\sin \theta $ acts along the tangent in the downward direction
ii) Frictional force acting in the opposite direction along the tangent, equal to $\mu mg\cos \theta $.
Since the bead is in equilibrium along the direction of the tangent, we have –
$mg\sin \theta = \mu mg\cos \theta $
$ \Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \mu $
$ \Rightarrow \tan \theta = \mu $
The slope of the tangent at any point is given by the tan of the angle made by the tangent with the horizontal.
However, the slope of the tangent is equal to the differential of the curve at the point. We have –
$\dfrac{{dy}}{{dx}} = \tan \theta $
The equation of the parabola is –
${x^2} = ay$
$ \Rightarrow y = \dfrac{{{x^2}}}{a}$
Differentiating the above equation, we get –
$\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{a}} \right) = \dfrac{{2x}}{a}$
Therefore, we have –
$\Rightarrow \dfrac{{2x}}{a} = \tan \theta $
Substituting the result of $\tan \theta $ from the derived equation, we have –
$\Rightarrow \dfrac{{2x}}{a} = \mu $
$\Rightarrow x = \dfrac{{\mu a}}{2}$
The maximum distance above the x-axis travelled by the bead is equal to: $x = \dfrac{{\mu a}}{2}$
Hence, the correct option is Option D.
Note: Students generally, confuse while writing the horizontal and vertical components of a vector. You can use a simple and handy thumb rule as shown here:

Consider a vector $\vec a$ inclined at angle $\theta $ as shown in the above figure:
- The line that is attached to the angle $\theta $ is designated as $\cos \theta $.
- The other line that is not attached to the angle $\theta $ is designated as $\sin \theta $.
Complete step by step answer:
Friction is a force that resists the relative motion between two solid surfaces, fluid layers, or material elements moving against one another. The frictional force acting on the body is dependent on the normal force acted upon by the surface on the body.
Frictional force,
$F \propto N$
By removing the constant of proportionality, we have –
$F = \mu N$
where $\mu = $coefficient of friction of the surface.
Consider a bead moving on the parabolic wire of equation ${x^2} = ay$ as shown.

The forces act alongside the tangent drawn on the curve at the point where mass m is situated. The forces acting on the bead are:
i) Weight mg whose component $mg\sin \theta $ acts along the tangent in the downward direction
ii) Frictional force acting in the opposite direction along the tangent, equal to $\mu mg\cos \theta $.
Since the bead is in equilibrium along the direction of the tangent, we have –
$mg\sin \theta = \mu mg\cos \theta $
$ \Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \mu $
$ \Rightarrow \tan \theta = \mu $
The slope of the tangent at any point is given by the tan of the angle made by the tangent with the horizontal.
However, the slope of the tangent is equal to the differential of the curve at the point. We have –
$\dfrac{{dy}}{{dx}} = \tan \theta $
The equation of the parabola is –
${x^2} = ay$
$ \Rightarrow y = \dfrac{{{x^2}}}{a}$
Differentiating the above equation, we get –
$\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{a}} \right) = \dfrac{{2x}}{a}$
Therefore, we have –
$\Rightarrow \dfrac{{2x}}{a} = \tan \theta $
Substituting the result of $\tan \theta $ from the derived equation, we have –
$\Rightarrow \dfrac{{2x}}{a} = \mu $
$\Rightarrow x = \dfrac{{\mu a}}{2}$
The maximum distance above the x-axis travelled by the bead is equal to: $x = \dfrac{{\mu a}}{2}$
Hence, the correct option is Option D.
Note: Students generally, confuse while writing the horizontal and vertical components of a vector. You can use a simple and handy thumb rule as shown here:

Consider a vector $\vec a$ inclined at angle $\theta $ as shown in the above figure:
- The line that is attached to the angle $\theta $ is designated as $\cos \theta $.
- The other line that is not attached to the angle $\theta $ is designated as $\sin \theta $.
Recently Updated Pages
JEE Main 2026 Cutoff Percentile: Rank Vs Percentile

JEE Main 2026 Session 1 Admit Card Release Date and Direct Download Link

JEE Main Exam Pattern 2026 - NTA Paper Pattern, Marking Scheme, Total Marks

JEE Main Slot Booking 2026 NTA Exam Slot Allotment Dates and Shifts

Self Declaration Form for JEE Mains 2026 - Mandatory Details and Filling Process

JEE Main 2026 Registration- Dates, Process, Documents, and Important Details

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Hybridisation in Chemistry – Concept, Types & Applications

