
A ball is bouncing down a flight of stairs. The coefficient of restitution is $e$ . The height of each step is $d$ and the ball descends one step each bounce. After each bounce it rebounds to a height $h$ above the next lower step. The height is large compared with the width of the step so that the impacts are effectively head-on. Find the relationship between $h$ and $d$.
(A) $h = \dfrac{d}{{1 - {e^2}}}$
(B) $h = \dfrac{d}{{1 + {e^2}}}$
(C) $h = \dfrac{d}{{1 + {e^{}}}}$
(D) $h = \sqrt {\dfrac{d}{{1 - {e^2}}}} $
Answer
232.8k+ views
Hint We are here asked to find the relationship between $h$ and $d$. Also we are given with the coefficient of restitution. Thus, it would be easier to go through the path of restitution analysis.
Formulae Used:
${v^2} - {u^2} = 2ah$
Where, $v$ is the final velocity of the particle, $u$ is the initial velocity of the particle, $a$ is the acceleration on it and $h$ is the height of the particle.
$e = \dfrac{{{v_2}}}{{{v_1}}}$
Where, $e$ is the coefficient of restitution, ${v_2}$ is the velocity of the particle after collision and ${v_1}$ is the velocity of the particle before collision.
Complete Step By Step Solution
Here,
For the first bounce of the ball on the top most step,
${v_1}^2 - {0^2} = 2ah$
We took ${u_1} = 0$ as the initial velocity of the ball was zero.
Thus, we get
$2ah = {v_1}^2 \cdot \cdot \cdot \cdot (1)$
Now,
After the first bounce, the new height of the ball is $(h - d)$,
Thus, we get
$2a(h - d) = {v_2}^2 \cdot \cdot \cdot \cdot (2)$
Now,
Applying$\dfrac{{Equation(1)}}{{Equation(2)}}$, we get
$\dfrac{h}{{h - d}} = \dfrac{{{v_1}^2}}{{{v_2}^2}}$
After further evaluation, we get
$\dfrac{{{v_2}}}{{{v_1}}} = \sqrt {\dfrac{{h - d}}{h}} $
But,
$e = \dfrac{{{v_2}}}{{{v_1}}}$
Thus, equating both, we get
$e = \sqrt {\dfrac{{h - d}}{h}} $
Further, we get
${e^2} = \dfrac{{h - d}}{h} \Rightarrow h{e^2} = h - d \Rightarrow h = \dfrac{d}{{1 - {e^2}}}$
Hence, the correct option is (A).
Note We have used the route of using the fundamental formula for coefficient of restitution as that allows us to directly relate all the given parameters. Moreover, in the given case it is given that the collision is head on which means completely elastic, but if the collision was inelastic, then the evaluation will be somewhat different.
Formulae Used:
${v^2} - {u^2} = 2ah$
Where, $v$ is the final velocity of the particle, $u$ is the initial velocity of the particle, $a$ is the acceleration on it and $h$ is the height of the particle.
$e = \dfrac{{{v_2}}}{{{v_1}}}$
Where, $e$ is the coefficient of restitution, ${v_2}$ is the velocity of the particle after collision and ${v_1}$ is the velocity of the particle before collision.
Complete Step By Step Solution
Here,
For the first bounce of the ball on the top most step,
${v_1}^2 - {0^2} = 2ah$
We took ${u_1} = 0$ as the initial velocity of the ball was zero.
Thus, we get
$2ah = {v_1}^2 \cdot \cdot \cdot \cdot (1)$
Now,
After the first bounce, the new height of the ball is $(h - d)$,
Thus, we get
$2a(h - d) = {v_2}^2 \cdot \cdot \cdot \cdot (2)$
Now,
Applying$\dfrac{{Equation(1)}}{{Equation(2)}}$, we get
$\dfrac{h}{{h - d}} = \dfrac{{{v_1}^2}}{{{v_2}^2}}$
After further evaluation, we get
$\dfrac{{{v_2}}}{{{v_1}}} = \sqrt {\dfrac{{h - d}}{h}} $
But,
$e = \dfrac{{{v_2}}}{{{v_1}}}$
Thus, equating both, we get
$e = \sqrt {\dfrac{{h - d}}{h}} $
Further, we get
${e^2} = \dfrac{{h - d}}{h} \Rightarrow h{e^2} = h - d \Rightarrow h = \dfrac{d}{{1 - {e^2}}}$
Hence, the correct option is (A).
Note We have used the route of using the fundamental formula for coefficient of restitution as that allows us to directly relate all the given parameters. Moreover, in the given case it is given that the collision is head on which means completely elastic, but if the collision was inelastic, then the evaluation will be somewhat different.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

