
A air bubble of radius 1 cm in water has an upward acceleration $9.8cm{s^{ - 2}}$. The density of water is $1gc{m^{ - 3}}$ and water offers negligible drag force on the bubble. The mass of the bubble is
(A) $1.52g$
(B) $4.51g$
(C) $3.15g$
(D) $4.15g$
Answer
160.8k+ views
Hint: In order to solve this question, we will balance all three forces acting on the air bubble which are gravity, upward force, and the buoyant force which acts in an upward direction, and then we will solve for the mass of the air bubble.
Formula used:
1. Force due to gravity on a body of mass m is:
$F = mg$
Where g is acceleration due to gravity $g = 980cm{s^{ - 2}}$
2. Force on a body of mass m and acceleration a is given by:
$F = ma$
3. The buoyant force on a body of volume V in water having density $\rho $ is:
$B = V\rho g$
Complete answer:

From the free body diagram of the air bubble we can see that by balancing all the three forces acting on the bubble, we get
$ma = B - mg \to (i)$
Now, volume of bubble is calculated as $V = \dfrac{4}{3}\pi {r^3}$ where $r = 1cm$
$V = \dfrac{4}{3}(3.14){(1)^3}$
$V = 4.19c{m^3} $
and density of water is given as $\rho = 1gc{m^{ - 3}}$
So, Buoyant force is given by $B = V\rho g$
$B = 4.19 \times 1 \times 980 $
$B = 4106.2gcm{s^{ - 2}} $
Now, due to upward acceleration force is $F = ma$ where $a = 9.8cm{s^{ - 2}}$
$F = 9.8m$ ‘m’ is the mass of the air bubble and force due to gravity on the bubble is given by $mg$ which is equal to $980m$
Using all the three forces values, put in equation (i) we get
$ 9.8m = 4106.2 - 980m$
$989.8m = 4106.2 $
$m = 4.15g $
So, the mass of the air bubble is $4.15g$
Hence, the correct option is (D) $4.15g$.
Note:It should be remembered that Archimedes found that when a body is immersed in water it experiences an upward force that is equal to the weight of the fluid displaced by the body and this force is known as buoyant force.
Formula used:
1. Force due to gravity on a body of mass m is:
$F = mg$
Where g is acceleration due to gravity $g = 980cm{s^{ - 2}}$
2. Force on a body of mass m and acceleration a is given by:
$F = ma$
3. The buoyant force on a body of volume V in water having density $\rho $ is:
$B = V\rho g$
Complete answer:

From the free body diagram of the air bubble we can see that by balancing all the three forces acting on the bubble, we get
$ma = B - mg \to (i)$
Now, volume of bubble is calculated as $V = \dfrac{4}{3}\pi {r^3}$ where $r = 1cm$
$V = \dfrac{4}{3}(3.14){(1)^3}$
$V = 4.19c{m^3} $
and density of water is given as $\rho = 1gc{m^{ - 3}}$
So, Buoyant force is given by $B = V\rho g$
$B = 4.19 \times 1 \times 980 $
$B = 4106.2gcm{s^{ - 2}} $
Now, due to upward acceleration force is $F = ma$ where $a = 9.8cm{s^{ - 2}}$
$F = 9.8m$ ‘m’ is the mass of the air bubble and force due to gravity on the bubble is given by $mg$ which is equal to $980m$
Using all the three forces values, put in equation (i) we get
$ 9.8m = 4106.2 - 980m$
$989.8m = 4106.2 $
$m = 4.15g $
So, the mass of the air bubble is $4.15g$
Hence, the correct option is (D) $4.15g$.
Note:It should be remembered that Archimedes found that when a body is immersed in water it experiences an upward force that is equal to the weight of the fluid displaced by the body and this force is known as buoyant force.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
