
A $2mW$ laser operates at a wavelength of $500nm$ . The number of photons that will be emitted per second is:
[Given Planck's constant \[h = 6.6 \times {10^{ - 34}}Js\] ,
speed of light \[c = 3.0 \times {10^8}m/s\] ]
(A) $2 \times {10^{16}}$
(B) $1.5 \times {10^{16}}$
(C) $5 \times {10^{15}}$
(D) $1 \times {10^{16}}$
Answer
221.1k+ views
Hint In lasers there are mainly three ways of interaction of atoms - spontaneous emission, stimulated emission and absorption of radiation. Power is defined as the energy per unit time and we also know the formula for energy of a photon. So, we can use them and substitute the given values to get the number of photons.
Formula Used:
\[E = \dfrac{{nhc}}{\lambda }\]
Complete step by step answer
When a photon has a frequency $\nu $ then the energy of the photon will be $h\nu $ where h is the Planck’s constant. We can write frequency as a ratio of speed and wavelength, so energy of photon expression for ‘n’ photons will become,
$E = \dfrac{{nhc}}{\lambda }$ ------ (1)
Power is the energy per unit time and in this question, it is given as $2mW = 2 \times {10^{ - 3}}W$ and wavelength is $500nm = 500 \times {10^{ - 9}}m$
and $P = \dfrac{E}{t}$ where E is the energy of photon and t is the time
Putting equation (1) in the above expression we have,
$P = \dfrac{E}{t} = \dfrac{{hc}}{{\lambda t}}$ and on rearranging we get,
$ \Rightarrow n = \dfrac{{P\lambda t}}{{hc}}$
Now let’s put the known values, keep in mind that the number of points emitted per second is asked so we can take $t = 1\sec $
Then $n = \dfrac{{2 \times {{10}^{ - 3}} \times 500 \times {{10}^{ - 9}} \times 1}}{{6.6 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}$
$ \Rightarrow n = 1.5 \times {10^{16}}$
Hence the correct option is B.
Note
If the energy of the photon is given in electron-volt(eV), then to change it in joules we can use
$1eV = 1.6 \times {10^{ - 19}}J$
In 1900, Planck proposed a theory that the emission of radiation is not continuous. It takes place in the form of small packets of definite energy called ‘quanta’. Later these were termed as ‘photons’. This theory was further explained by Einstein who said that light travels in a packet of energy called as photons and each photon has $h\nu $ energy where h is Planck’s constant and $\nu $ is intensity.
Formula Used:
\[E = \dfrac{{nhc}}{\lambda }\]
Complete step by step answer
When a photon has a frequency $\nu $ then the energy of the photon will be $h\nu $ where h is the Planck’s constant. We can write frequency as a ratio of speed and wavelength, so energy of photon expression for ‘n’ photons will become,
$E = \dfrac{{nhc}}{\lambda }$ ------ (1)
Power is the energy per unit time and in this question, it is given as $2mW = 2 \times {10^{ - 3}}W$ and wavelength is $500nm = 500 \times {10^{ - 9}}m$
and $P = \dfrac{E}{t}$ where E is the energy of photon and t is the time
Putting equation (1) in the above expression we have,
$P = \dfrac{E}{t} = \dfrac{{hc}}{{\lambda t}}$ and on rearranging we get,
$ \Rightarrow n = \dfrac{{P\lambda t}}{{hc}}$
Now let’s put the known values, keep in mind that the number of points emitted per second is asked so we can take $t = 1\sec $
Then $n = \dfrac{{2 \times {{10}^{ - 3}} \times 500 \times {{10}^{ - 9}} \times 1}}{{6.6 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}$
$ \Rightarrow n = 1.5 \times {10^{16}}$
Hence the correct option is B.
Note
If the energy of the photon is given in electron-volt(eV), then to change it in joules we can use
$1eV = 1.6 \times {10^{ - 19}}J$
In 1900, Planck proposed a theory that the emission of radiation is not continuous. It takes place in the form of small packets of definite energy called ‘quanta’. Later these were termed as ‘photons’. This theory was further explained by Einstein who said that light travels in a packet of energy called as photons and each photon has $h\nu $ energy where h is Planck’s constant and $\nu $ is intensity.
Recently Updated Pages
[Awaiting input: Please provide the content from "Ask AI Response," "Competitor 1," and "Competitor 2," so I can perform the analysis and synthesize the requested metadata and headings.]

Young’s Double Slit Experiment Derivation Explained

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

