
A 20 litre container at 400K contains \[C{{O}_{2}}(g)\] at pressure 0.4 atm and an excess of SrO. The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when the pressure of carbon dioxide attains its maximum value, will be:
(A) 5L
(B) 10L
(C) 4L
(D) 2L
Given that: \[SrC{{O}_{3}}(s)\rightleftharpoons SrO(s)+C{{O}_{2}}(g)\]; \[{{K}_{p}}\]= 1.6atm
Answer
171.3k+ views
Hint: Look at the values given in the question, this gives you a clear idea of what the question is asking. Since we have been given volume, pressure, temperature and Kp, this is a question for chemical equilibrium.
Complete step by step answer:
- Let us first write down the values given in the question.
Volume = 20 L
Temperature = 400 K
Pressure (initial) of \[C{{O}_{2}}\]= 0.4 atm
> As we know, volume and pressure are inversely related. So, when volume decreases, the pressure will increase.
From the reaction
\[SrC{{O}_{3}}(s)\rightleftharpoons SrO(s)+C{{O}_{2}}(g)\]
Given, Kp = 1.6 atm.
Since \[SrC{{O}_{3}}\] and SrO are solids, they don’t contribute to pressure.
Therefore, Kp depends only on carbon dioxide.
So, Kp = pressure of carbon dioxide at equilibrium
Hence, we can say that the maximum pressure of carbon dioxide after compression is 1.6 atm.
So, Pressure (final) = 1.6 atm
According to Boyle’s law,
\[\begin{align}& {{\text{P}}_{\text{i}}}{{\text{V}}_{\text{i}}}\text{=}{{\text{P}}_{\text{f}}}{{\text{V}}_{\text{f}}} \\
& \text{Vf = }\dfrac{{{\text{P}}_{\text{i}}}{{\text{V}}_{\text{i}}}}{{{\text{P}}_{\text{f}}}}\text{=}\dfrac{\text{0}\text{.4 x 20}}{\text{1}\text{.6}}\text{ = 5L} \\
\end{align}\]
Therefore, the answer is – option (a) – The maximum volume of the container, when the pressure of carbon dioxide attains its maximum value, will be 5L.
Additional Information: According to Boyle’s law “the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature”.
Note: \[{{K}_{p}}\] is a gas equilibrium constant. It is calculated from the partial pressures of a reaction equation. \[{{K}_{p}}\]is used to express the relationship between product and reactant pressures.
Complete step by step answer:
- Let us first write down the values given in the question.
Volume = 20 L
Temperature = 400 K
Pressure (initial) of \[C{{O}_{2}}\]= 0.4 atm
> As we know, volume and pressure are inversely related. So, when volume decreases, the pressure will increase.
From the reaction
\[SrC{{O}_{3}}(s)\rightleftharpoons SrO(s)+C{{O}_{2}}(g)\]
Given, Kp = 1.6 atm.
Since \[SrC{{O}_{3}}\] and SrO are solids, they don’t contribute to pressure.
Therefore, Kp depends only on carbon dioxide.
So, Kp = pressure of carbon dioxide at equilibrium
Hence, we can say that the maximum pressure of carbon dioxide after compression is 1.6 atm.
So, Pressure (final) = 1.6 atm
According to Boyle’s law,
\[\begin{align}& {{\text{P}}_{\text{i}}}{{\text{V}}_{\text{i}}}\text{=}{{\text{P}}_{\text{f}}}{{\text{V}}_{\text{f}}} \\
& \text{Vf = }\dfrac{{{\text{P}}_{\text{i}}}{{\text{V}}_{\text{i}}}}{{{\text{P}}_{\text{f}}}}\text{=}\dfrac{\text{0}\text{.4 x 20}}{\text{1}\text{.6}}\text{ = 5L} \\
\end{align}\]
Therefore, the answer is – option (a) – The maximum volume of the container, when the pressure of carbon dioxide attains its maximum value, will be 5L.
Additional Information: According to Boyle’s law “the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature”.
Note: \[{{K}_{p}}\] is a gas equilibrium constant. It is calculated from the partial pressures of a reaction equation. \[{{K}_{p}}\]is used to express the relationship between product and reactant pressures.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

What is Hybridisation in Chemistry?

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solution for Class 11 Chemistry Chapter 1 Some Basic Concepts of Chemistry Hindi Medium - 2025-26

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reactions - 2025-26

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
