
A 20 litre container at 400K contains \[C{{O}_{2}}(g)\] at pressure 0.4 atm and an excess of SrO. The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when the pressure of carbon dioxide attains its maximum value, will be:
(A) 5L
(B) 10L
(C) 4L
(D) 2L
Given that: \[SrC{{O}_{3}}(s)\rightleftharpoons SrO(s)+C{{O}_{2}}(g)\]; \[{{K}_{p}}\]= 1.6atm
Answer
124.5k+ views
Hint: Look at the values given in the question, this gives you a clear idea of what the question is asking. Since we have been given volume, pressure, temperature and Kp, this is a question for chemical equilibrium.
Complete step by step answer:
- Let us first write down the values given in the question.
Volume = 20 L
Temperature = 400 K
Pressure (initial) of \[C{{O}_{2}}\]= 0.4 atm
> As we know, volume and pressure are inversely related. So, when volume decreases, the pressure will increase.
From the reaction
\[SrC{{O}_{3}}(s)\rightleftharpoons SrO(s)+C{{O}_{2}}(g)\]
Given, Kp = 1.6 atm.
Since \[SrC{{O}_{3}}\] and SrO are solids, they don’t contribute to pressure.
Therefore, Kp depends only on carbon dioxide.
So, Kp = pressure of carbon dioxide at equilibrium
Hence, we can say that the maximum pressure of carbon dioxide after compression is 1.6 atm.
So, Pressure (final) = 1.6 atm
According to Boyle’s law,
\[\begin{align}& {{\text{P}}_{\text{i}}}{{\text{V}}_{\text{i}}}\text{=}{{\text{P}}_{\text{f}}}{{\text{V}}_{\text{f}}} \\
& \text{Vf = }\dfrac{{{\text{P}}_{\text{i}}}{{\text{V}}_{\text{i}}}}{{{\text{P}}_{\text{f}}}}\text{=}\dfrac{\text{0}\text{.4 x 20}}{\text{1}\text{.6}}\text{ = 5L} \\
\end{align}\]
Therefore, the answer is – option (a) – The maximum volume of the container, when the pressure of carbon dioxide attains its maximum value, will be 5L.
Additional Information: According to Boyle’s law “the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature”.
Note: \[{{K}_{p}}\] is a gas equilibrium constant. It is calculated from the partial pressures of a reaction equation. \[{{K}_{p}}\]is used to express the relationship between product and reactant pressures.
Complete step by step answer:
- Let us first write down the values given in the question.
Volume = 20 L
Temperature = 400 K
Pressure (initial) of \[C{{O}_{2}}\]= 0.4 atm
> As we know, volume and pressure are inversely related. So, when volume decreases, the pressure will increase.
From the reaction
\[SrC{{O}_{3}}(s)\rightleftharpoons SrO(s)+C{{O}_{2}}(g)\]
Given, Kp = 1.6 atm.
Since \[SrC{{O}_{3}}\] and SrO are solids, they don’t contribute to pressure.
Therefore, Kp depends only on carbon dioxide.
So, Kp = pressure of carbon dioxide at equilibrium
Hence, we can say that the maximum pressure of carbon dioxide after compression is 1.6 atm.
So, Pressure (final) = 1.6 atm
According to Boyle’s law,
\[\begin{align}& {{\text{P}}_{\text{i}}}{{\text{V}}_{\text{i}}}\text{=}{{\text{P}}_{\text{f}}}{{\text{V}}_{\text{f}}} \\
& \text{Vf = }\dfrac{{{\text{P}}_{\text{i}}}{{\text{V}}_{\text{i}}}}{{{\text{P}}_{\text{f}}}}\text{=}\dfrac{\text{0}\text{.4 x 20}}{\text{1}\text{.6}}\text{ = 5L} \\
\end{align}\]
Therefore, the answer is – option (a) – The maximum volume of the container, when the pressure of carbon dioxide attains its maximum value, will be 5L.
Additional Information: According to Boyle’s law “the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature”.
Note: \[{{K}_{p}}\] is a gas equilibrium constant. It is calculated from the partial pressures of a reaction equation. \[{{K}_{p}}\]is used to express the relationship between product and reactant pressures.
Recently Updated Pages
Types of Solutions - Solution in Chemistry

Difference Between Crystalline and Amorphous Solid

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main Login 2045: Step-by-Step Instructions and Details

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium

NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
