
A 2 molal solution of sodium chloride in water causes an elevation in the boiling point of water by 1.88K. What is the value of Van't Hoff factor? What does it signify?
$\text{ }\!\![\!\!\text{ }{{\text{K}}_{b}}\text{ = 0}\text{.52K kg mo}{{\text{l}}^{-1}}]$
Answer
224.7k+ views
Hint: Elevation in boiling point is a colligative property. The formula to calculate elevation is multiplied by a term called the Van't Hoff factor keeping in mind the increase in the number of particles after dissociation of an ionic compound.
Complete step by step solution:
Colligative properties are the properties of solutions that depend on the ratio of the number of solute particles to the number of solvent molecules in a solution, and not on the nature of the chemical species present.
The number ratio can be related to the various units for the concentration of a solution, for example, molarity, molality, normality etc.
The colligative properties are:
Relative lowering of vapour pressure
Elevation of boiling point
Depression of freezing point
Osmotic pressure
The boiling point of a liquid at a given external pressure is the temperature (\[{{T}_{b}}\]) at which the vapour pressure of the liquid equals the external pressure. The normal boiling point is the boiling point at a pressure equal to 1 atm.
The boiling point of a pure solvent is increased when a non-volatile solute to the solvent and the elevation can be measured by ebullioscopy. It is found that
$\Delta {{T}_{b}}\text{ = }{{\text{T}}_{b}}(solution)-{{T}_{b}}(solvent)\text{ = i }\text{. }{{\text{K}}_{b}}\text{. m}$
Here i is the van 't Hoff factor as above, ${{K}_{b}}$ is the ebullioscopic constant of the solvent (0.512 K kg $\text{mo}{{\text{l}}^{-1}}$ for water), and m is the molality of the solution.
We will now substitute the values in the equation given below to find the Van't Hoff factor for sodium chloride.
$1.88\text{ = i }\text{. (0}\text{.52) }\text{. 2}$
$\text{i = 1}\text{.8}$
Hence the Van't Hoff factor for the solution is 1.8.
Note: Van't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as per its mass. The value of the Van't Hoff factor is greater than 1 for dissociation of ionic compounds. In the above question we discussed the value of Van't Hoff factor for dissociation of non-volatile solute. However, some solutes can undergo association when added to a solvent. For e.g. Benzoic acid undergoes association when added to the solvent benzene. For association, the value of the Van't Hoff factor is less than 1.
Complete step by step solution:
Colligative properties are the properties of solutions that depend on the ratio of the number of solute particles to the number of solvent molecules in a solution, and not on the nature of the chemical species present.
The number ratio can be related to the various units for the concentration of a solution, for example, molarity, molality, normality etc.
The colligative properties are:
Relative lowering of vapour pressure
Elevation of boiling point
Depression of freezing point
Osmotic pressure
The boiling point of a liquid at a given external pressure is the temperature (\[{{T}_{b}}\]) at which the vapour pressure of the liquid equals the external pressure. The normal boiling point is the boiling point at a pressure equal to 1 atm.
The boiling point of a pure solvent is increased when a non-volatile solute to the solvent and the elevation can be measured by ebullioscopy. It is found that
$\Delta {{T}_{b}}\text{ = }{{\text{T}}_{b}}(solution)-{{T}_{b}}(solvent)\text{ = i }\text{. }{{\text{K}}_{b}}\text{. m}$
Here i is the van 't Hoff factor as above, ${{K}_{b}}$ is the ebullioscopic constant of the solvent (0.512 K kg $\text{mo}{{\text{l}}^{-1}}$ for water), and m is the molality of the solution.
We will now substitute the values in the equation given below to find the Van't Hoff factor for sodium chloride.
$1.88\text{ = i }\text{. (0}\text{.52) }\text{. 2}$
$\text{i = 1}\text{.8}$
Hence the Van't Hoff factor for the solution is 1.8.
Note: Van't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as per its mass. The value of the Van't Hoff factor is greater than 1 for dissociation of ionic compounds. In the above question we discussed the value of Van't Hoff factor for dissociation of non-volatile solute. However, some solutes can undergo association when added to a solvent. For e.g. Benzoic acid undergoes association when added to the solvent benzene. For association, the value of the Van't Hoff factor is less than 1.
Recently Updated Pages
JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Organic Compounds Containing Nitrogen Mock Test

JEE Main Chemical Kinetics Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Organic Compounds Containing Oxygen Mock Test

JEE Main 2025-26 Organic Compounds Containing Halogens Mock Test

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 4 The D and F Block Elements

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules - 2025-26

