
5.5 g of a mixture of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\] and \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\] requires 5.4 ml of 0.1 N \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\] solution for complete oxidation. Calculate the number of moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right){\rm{39}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\] in the mixture.
A. 0.0095
B. 0.15
C. 0.0952
D. 1.52
Answer
162.9k+ views
Hint: The term milliequivalent is the unit used to measure the concentration of electrolytes. It measures the chemical reactivity of an electrolyte.
Formula used:
The formula to calculate mole number is,
Number of moles=\[\dfrac{{{\rm{Mass}}}}{{{\rm{Molar}}\,{\rm{mass}}}}\]
Complete Step by Step Solution:
Here, we have to first calculate the mass of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\].s
The reactions are,
\[5{e^ - } + {\rm{M}}{{\rm{n}}^{{\rm{ + 7}}}} \to {\rm{M}}{{\rm{n}}^{{\rm{ + 2}}}}\]
\[{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}} \to {\rm{F}}{{\rm{e}}^{{\rm{3 + }}}} + {e^ - }\]
So, only \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]undergoes reaction with \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\]. Therefore, miliequivalents of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is equal to miliequivalent of \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\].
\[{{\rm{M}}_{{\rm{eq}}}}\,{\rm{of}}\,{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}} = \,{{\rm{M}}_{{\rm{eq}}}}\,{\rm{of}}\,{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\] ---- (1)
The formula of milliequivalent is,
mEq=\[\dfrac{{{\rm{Weight}}}}{{{\rm{Eq}}{\rm{.}}\,{\rm{weight}}}}{\rm{ \times 1000}}\]
So, equation (1) becomes,
\[\dfrac{{{\rm{Weight}}}}{{{\rm{Eq}}{\rm{.}}\,{\rm{weight}}}}{\rm{ \times 1000}} = 0.1 \times 5.4 \times 1\] ----- (2)
Equivalent weight formula is \[\dfrac{{{\rm{Molecular}}\,{\rm{formula}}}}{{{\rm{Valency}}\,{\rm{factor}}}}\]
Weight of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 178 g and the valency factor for \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 1. So, Equation (2) becomes,
\[\dfrac{{{\rm{Weight}}}}{{\dfrac{{178}}{1}}}{\rm{ \times 1000}} = 0.1 \times 5.4 \times 1\]
\[{{\rm{W}}_{{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}}} = {\rm{0}}{\rm{.150}}\,{\rm{g}}\]
The total mass is given 5.5 g and the mass of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 0.150 g. Now, we have to calculate the mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\].
Mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}} = 5.5 - 0.150 = 5.35\,{\rm{g}}\]
Now, we have to find out the moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]. The molar mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 562 g.
Number of moles=\[\dfrac{{5.35}}{{562}} = 0.00951\,{\rm{mol}}\]
Therefore, the moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]in the mixture is 0.00951.
Hence, option (c) is correct.
Note: Equivalent weight defines the mass of a substance that undergoes combination with a fixed mass of another substance. Originally equivalent weights were calculated experimentally, but nowadays they are calculated from molar masses. A compound's equivalent weight is calculated by the division of molecular mass by the quantity of charge (negative or positive) resulting from the dissolution of the compound.
Formula used:
The formula to calculate mole number is,
Number of moles=\[\dfrac{{{\rm{Mass}}}}{{{\rm{Molar}}\,{\rm{mass}}}}\]
Complete Step by Step Solution:
Here, we have to first calculate the mass of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\].s
The reactions are,
\[5{e^ - } + {\rm{M}}{{\rm{n}}^{{\rm{ + 7}}}} \to {\rm{M}}{{\rm{n}}^{{\rm{ + 2}}}}\]
\[{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}} \to {\rm{F}}{{\rm{e}}^{{\rm{3 + }}}} + {e^ - }\]
So, only \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]undergoes reaction with \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\]. Therefore, miliequivalents of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is equal to miliequivalent of \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\].
\[{{\rm{M}}_{{\rm{eq}}}}\,{\rm{of}}\,{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}} = \,{{\rm{M}}_{{\rm{eq}}}}\,{\rm{of}}\,{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\] ---- (1)
The formula of milliequivalent is,
mEq=\[\dfrac{{{\rm{Weight}}}}{{{\rm{Eq}}{\rm{.}}\,{\rm{weight}}}}{\rm{ \times 1000}}\]
So, equation (1) becomes,
\[\dfrac{{{\rm{Weight}}}}{{{\rm{Eq}}{\rm{.}}\,{\rm{weight}}}}{\rm{ \times 1000}} = 0.1 \times 5.4 \times 1\] ----- (2)
Equivalent weight formula is \[\dfrac{{{\rm{Molecular}}\,{\rm{formula}}}}{{{\rm{Valency}}\,{\rm{factor}}}}\]
Weight of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 178 g and the valency factor for \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 1. So, Equation (2) becomes,
\[\dfrac{{{\rm{Weight}}}}{{\dfrac{{178}}{1}}}{\rm{ \times 1000}} = 0.1 \times 5.4 \times 1\]
\[{{\rm{W}}_{{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}}} = {\rm{0}}{\rm{.150}}\,{\rm{g}}\]
The total mass is given 5.5 g and the mass of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 0.150 g. Now, we have to calculate the mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\].
Mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}} = 5.5 - 0.150 = 5.35\,{\rm{g}}\]
Now, we have to find out the moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]. The molar mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 562 g.
Number of moles=\[\dfrac{{5.35}}{{562}} = 0.00951\,{\rm{mol}}\]
Therefore, the moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]in the mixture is 0.00951.
Hence, option (c) is correct.
Note: Equivalent weight defines the mass of a substance that undergoes combination with a fixed mass of another substance. Originally equivalent weights were calculated experimentally, but nowadays they are calculated from molar masses. A compound's equivalent weight is calculated by the division of molecular mass by the quantity of charge (negative or positive) resulting from the dissolution of the compound.
Recently Updated Pages
JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

IIT Full Form

Difference Between Metals and Non-Metals for JEE Main 2024

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
