
5.5 g of a mixture of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\] and \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\] requires 5.4 ml of 0.1 N \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\] solution for complete oxidation. Calculate the number of moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right){\rm{39}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\] in the mixture.
A. 0.0095
B. 0.15
C. 0.0952
D. 1.52
Answer
214.8k+ views
Hint: The term milliequivalent is the unit used to measure the concentration of electrolytes. It measures the chemical reactivity of an electrolyte.
Formula used:
The formula to calculate mole number is,
Number of moles=\[\dfrac{{{\rm{Mass}}}}{{{\rm{Molar}}\,{\rm{mass}}}}\]
Complete Step by Step Solution:
Here, we have to first calculate the mass of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\].s
The reactions are,
\[5{e^ - } + {\rm{M}}{{\rm{n}}^{{\rm{ + 7}}}} \to {\rm{M}}{{\rm{n}}^{{\rm{ + 2}}}}\]
\[{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}} \to {\rm{F}}{{\rm{e}}^{{\rm{3 + }}}} + {e^ - }\]
So, only \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]undergoes reaction with \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\]. Therefore, miliequivalents of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is equal to miliequivalent of \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\].
\[{{\rm{M}}_{{\rm{eq}}}}\,{\rm{of}}\,{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}} = \,{{\rm{M}}_{{\rm{eq}}}}\,{\rm{of}}\,{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\] ---- (1)
The formula of milliequivalent is,
mEq=\[\dfrac{{{\rm{Weight}}}}{{{\rm{Eq}}{\rm{.}}\,{\rm{weight}}}}{\rm{ \times 1000}}\]
So, equation (1) becomes,
\[\dfrac{{{\rm{Weight}}}}{{{\rm{Eq}}{\rm{.}}\,{\rm{weight}}}}{\rm{ \times 1000}} = 0.1 \times 5.4 \times 1\] ----- (2)
Equivalent weight formula is \[\dfrac{{{\rm{Molecular}}\,{\rm{formula}}}}{{{\rm{Valency}}\,{\rm{factor}}}}\]
Weight of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 178 g and the valency factor for \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 1. So, Equation (2) becomes,
\[\dfrac{{{\rm{Weight}}}}{{\dfrac{{178}}{1}}}{\rm{ \times 1000}} = 0.1 \times 5.4 \times 1\]
\[{{\rm{W}}_{{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}}} = {\rm{0}}{\rm{.150}}\,{\rm{g}}\]
The total mass is given 5.5 g and the mass of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 0.150 g. Now, we have to calculate the mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\].
Mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}} = 5.5 - 0.150 = 5.35\,{\rm{g}}\]
Now, we have to find out the moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]. The molar mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 562 g.
Number of moles=\[\dfrac{{5.35}}{{562}} = 0.00951\,{\rm{mol}}\]
Therefore, the moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]in the mixture is 0.00951.
Hence, option (c) is correct.
Note: Equivalent weight defines the mass of a substance that undergoes combination with a fixed mass of another substance. Originally equivalent weights were calculated experimentally, but nowadays they are calculated from molar masses. A compound's equivalent weight is calculated by the division of molecular mass by the quantity of charge (negative or positive) resulting from the dissolution of the compound.
Formula used:
The formula to calculate mole number is,
Number of moles=\[\dfrac{{{\rm{Mass}}}}{{{\rm{Molar}}\,{\rm{mass}}}}\]
Complete Step by Step Solution:
Here, we have to first calculate the mass of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\].s
The reactions are,
\[5{e^ - } + {\rm{M}}{{\rm{n}}^{{\rm{ + 7}}}} \to {\rm{M}}{{\rm{n}}^{{\rm{ + 2}}}}\]
\[{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}} \to {\rm{F}}{{\rm{e}}^{{\rm{3 + }}}} + {e^ - }\]
So, only \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]undergoes reaction with \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\]. Therefore, miliequivalents of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is equal to miliequivalent of \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\].
\[{{\rm{M}}_{{\rm{eq}}}}\,{\rm{of}}\,{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}} = \,{{\rm{M}}_{{\rm{eq}}}}\,{\rm{of}}\,{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\] ---- (1)
The formula of milliequivalent is,
mEq=\[\dfrac{{{\rm{Weight}}}}{{{\rm{Eq}}{\rm{.}}\,{\rm{weight}}}}{\rm{ \times 1000}}\]
So, equation (1) becomes,
\[\dfrac{{{\rm{Weight}}}}{{{\rm{Eq}}{\rm{.}}\,{\rm{weight}}}}{\rm{ \times 1000}} = 0.1 \times 5.4 \times 1\] ----- (2)
Equivalent weight formula is \[\dfrac{{{\rm{Molecular}}\,{\rm{formula}}}}{{{\rm{Valency}}\,{\rm{factor}}}}\]
Weight of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 178 g and the valency factor for \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 1. So, Equation (2) becomes,
\[\dfrac{{{\rm{Weight}}}}{{\dfrac{{178}}{1}}}{\rm{ \times 1000}} = 0.1 \times 5.4 \times 1\]
\[{{\rm{W}}_{{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}}} = {\rm{0}}{\rm{.150}}\,{\rm{g}}\]
The total mass is given 5.5 g and the mass of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 0.150 g. Now, we have to calculate the mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\].
Mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}} = 5.5 - 0.150 = 5.35\,{\rm{g}}\]
Now, we have to find out the moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]. The molar mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 562 g.
Number of moles=\[\dfrac{{5.35}}{{562}} = 0.00951\,{\rm{mol}}\]
Therefore, the moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]in the mixture is 0.00951.
Hence, option (c) is correct.
Note: Equivalent weight defines the mass of a substance that undergoes combination with a fixed mass of another substance. Originally equivalent weights were calculated experimentally, but nowadays they are calculated from molar masses. A compound's equivalent weight is calculated by the division of molecular mass by the quantity of charge (negative or positive) resulting from the dissolution of the compound.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

