
5.5 g of a mixture of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\] and \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\] requires 5.4 ml of 0.1 N \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\] solution for complete oxidation. Calculate the number of moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right){\rm{39}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\] in the mixture.
A. 0.0095
B. 0.15
C. 0.0952
D. 1.52
Answer
222k+ views
Hint: The term milliequivalent is the unit used to measure the concentration of electrolytes. It measures the chemical reactivity of an electrolyte.
Formula used:
The formula to calculate mole number is,
Number of moles=\[\dfrac{{{\rm{Mass}}}}{{{\rm{Molar}}\,{\rm{mass}}}}\]
Complete Step by Step Solution:
Here, we have to first calculate the mass of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\].s
The reactions are,
\[5{e^ - } + {\rm{M}}{{\rm{n}}^{{\rm{ + 7}}}} \to {\rm{M}}{{\rm{n}}^{{\rm{ + 2}}}}\]
\[{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}} \to {\rm{F}}{{\rm{e}}^{{\rm{3 + }}}} + {e^ - }\]
So, only \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]undergoes reaction with \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\]. Therefore, miliequivalents of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is equal to miliequivalent of \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\].
\[{{\rm{M}}_{{\rm{eq}}}}\,{\rm{of}}\,{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}} = \,{{\rm{M}}_{{\rm{eq}}}}\,{\rm{of}}\,{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\] ---- (1)
The formula of milliequivalent is,
mEq=\[\dfrac{{{\rm{Weight}}}}{{{\rm{Eq}}{\rm{.}}\,{\rm{weight}}}}{\rm{ \times 1000}}\]
So, equation (1) becomes,
\[\dfrac{{{\rm{Weight}}}}{{{\rm{Eq}}{\rm{.}}\,{\rm{weight}}}}{\rm{ \times 1000}} = 0.1 \times 5.4 \times 1\] ----- (2)
Equivalent weight formula is \[\dfrac{{{\rm{Molecular}}\,{\rm{formula}}}}{{{\rm{Valency}}\,{\rm{factor}}}}\]
Weight of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 178 g and the valency factor for \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 1. So, Equation (2) becomes,
\[\dfrac{{{\rm{Weight}}}}{{\dfrac{{178}}{1}}}{\rm{ \times 1000}} = 0.1 \times 5.4 \times 1\]
\[{{\rm{W}}_{{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}}} = {\rm{0}}{\rm{.150}}\,{\rm{g}}\]
The total mass is given 5.5 g and the mass of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 0.150 g. Now, we have to calculate the mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\].
Mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}} = 5.5 - 0.150 = 5.35\,{\rm{g}}\]
Now, we have to find out the moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]. The molar mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 562 g.
Number of moles=\[\dfrac{{5.35}}{{562}} = 0.00951\,{\rm{mol}}\]
Therefore, the moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]in the mixture is 0.00951.
Hence, option (c) is correct.
Note: Equivalent weight defines the mass of a substance that undergoes combination with a fixed mass of another substance. Originally equivalent weights were calculated experimentally, but nowadays they are calculated from molar masses. A compound's equivalent weight is calculated by the division of molecular mass by the quantity of charge (negative or positive) resulting from the dissolution of the compound.
Formula used:
The formula to calculate mole number is,
Number of moles=\[\dfrac{{{\rm{Mass}}}}{{{\rm{Molar}}\,{\rm{mass}}}}\]
Complete Step by Step Solution:
Here, we have to first calculate the mass of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\].s
The reactions are,
\[5{e^ - } + {\rm{M}}{{\rm{n}}^{{\rm{ + 7}}}} \to {\rm{M}}{{\rm{n}}^{{\rm{ + 2}}}}\]
\[{\rm{F}}{{\rm{e}}^{{\rm{2 + }}}} \to {\rm{F}}{{\rm{e}}^{{\rm{3 + }}}} + {e^ - }\]
So, only \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]undergoes reaction with \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\]. Therefore, miliequivalents of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is equal to miliequivalent of \[{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\].
\[{{\rm{M}}_{{\rm{eq}}}}\,{\rm{of}}\,{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}} = \,{{\rm{M}}_{{\rm{eq}}}}\,{\rm{of}}\,{\rm{KMn}}{{\rm{O}}_{\rm{4}}}\] ---- (1)
The formula of milliequivalent is,
mEq=\[\dfrac{{{\rm{Weight}}}}{{{\rm{Eq}}{\rm{.}}\,{\rm{weight}}}}{\rm{ \times 1000}}\]
So, equation (1) becomes,
\[\dfrac{{{\rm{Weight}}}}{{{\rm{Eq}}{\rm{.}}\,{\rm{weight}}}}{\rm{ \times 1000}} = 0.1 \times 5.4 \times 1\] ----- (2)
Equivalent weight formula is \[\dfrac{{{\rm{Molecular}}\,{\rm{formula}}}}{{{\rm{Valency}}\,{\rm{factor}}}}\]
Weight of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 178 g and the valency factor for \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 1. So, Equation (2) becomes,
\[\dfrac{{{\rm{Weight}}}}{{\dfrac{{178}}{1}}}{\rm{ \times 1000}} = 0.1 \times 5.4 \times 1\]
\[{{\rm{W}}_{{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}}} = {\rm{0}}{\rm{.150}}\,{\rm{g}}\]
The total mass is given 5.5 g and the mass of \[{\rm{FeS}}{{\rm{O}}_{\rm{4}}}{\rm{.7}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 0.150 g. Now, we have to calculate the mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\].
Mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}} = 5.5 - 0.150 = 5.35\,{\rm{g}}\]
Now, we have to find out the moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]. The molar mass of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]is 562 g.
Number of moles=\[\dfrac{{5.35}}{{562}} = 0.00951\,{\rm{mol}}\]
Therefore, the moles of \[{\rm{F}}{{\rm{e}}_{\rm{2}}}{\left( {{\rm{S}}{{\rm{O}}_{\rm{4}}}} \right)_{\rm{3}}}{\rm{9}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\]in the mixture is 0.00951.
Hence, option (c) is correct.
Note: Equivalent weight defines the mass of a substance that undergoes combination with a fixed mass of another substance. Originally equivalent weights were calculated experimentally, but nowadays they are calculated from molar masses. A compound's equivalent weight is calculated by the division of molecular mass by the quantity of charge (negative or positive) resulting from the dissolution of the compound.
Recently Updated Pages
Types of Solutions in Chemistry: Explained Simply

States of Matter Chapter For JEE Main Chemistry

Know The Difference Between Fluid And Liquid

Difference Between Crystalline and Amorphous Solid: Table & Examples

Conduction Explained: Definition, Examples & Science for Students

Balancing of Redox Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

