
\[4.4g\] of $C{O_2}$ and $2.24$ litre of ${H_2}$ at STP are mixed in a container .The total number of molecules present in the container will be :
A . $6.022 \times {10^{23}}$
B . $1.2044 \times {10^{23}}$
C . $6.022 \times {10^{26}}$
D . $6.022 \times {10^{24}}$
Answer
519.5k+ views
Hint: We know the formula of number of moles that is Number of moles of carbon dioxide=weight of carbon dioxide in gram/molecular weight of carbon dioxide .When volume of gas is given at STP then we can calculate number of moles of molecule with the help of formula ; Number of moles of molecule =Volume of gas at STP (in litre)/$22.4$ (in litre).
Complete answer:
> It is given in the problem that weight of $C{O_2}$ in gram $ = 4.4g$,molecular weight of $C{O_2}$=atomic weight of carbon+2×atomic weight of oxygen $ = 12 + 2 \times 16 = 44$. So here in the given problem the number of moles of carbon dioxide $ = \dfrac{{4.4}}{{44}} = 0.1$ mole. Now we will calculate the number of moles of the Hydrogen molecule.
$2.24$ litre volume of ${H_2}$ is present at STP ,we know that molar volume of ${H_2}$at STP is $22.4$litre.
> Hence the number of moles of hydrogen molecule $ = \dfrac{{2.24}}{{22.4}} = 0.1$ mole.
Total number of moles present in the mixture $ = 0.1 + 0.1 = 0.2$ mole.
We know that one mole occupies ${N_A}$ (Avogadro’s Number) molecules .So here the total number of molecules present in the container $ = 0.2 \times {N_A} = 0.2 \times 6.022 \times {10^{23}}$
$ = 1.2044 \times {10^{23}}$
Hence the option B is correct, that is $1.2044 \times {10^{23}}$ .
Note : We have approached this problem by calculating the total number of moles in the container. Once we get total number of moles present in the mixture we have multiplied it with Avogadro’s number which is equal to $6.022 \times {10^{23}}$ .As we know that one mole is equal to Avogadro’s number at STP. When \[4.4g\] of $C{O_2}$ and $2.24$ litre of ${H_2}$ at STP are mixed in a container then the total number of molecules present in the container will be $1.2044 \times {10^{23}}$ .
Complete answer:
> It is given in the problem that weight of $C{O_2}$ in gram $ = 4.4g$,molecular weight of $C{O_2}$=atomic weight of carbon+2×atomic weight of oxygen $ = 12 + 2 \times 16 = 44$. So here in the given problem the number of moles of carbon dioxide $ = \dfrac{{4.4}}{{44}} = 0.1$ mole. Now we will calculate the number of moles of the Hydrogen molecule.
$2.24$ litre volume of ${H_2}$ is present at STP ,we know that molar volume of ${H_2}$at STP is $22.4$litre.
> Hence the number of moles of hydrogen molecule $ = \dfrac{{2.24}}{{22.4}} = 0.1$ mole.
Total number of moles present in the mixture $ = 0.1 + 0.1 = 0.2$ mole.
We know that one mole occupies ${N_A}$ (Avogadro’s Number) molecules .So here the total number of molecules present in the container $ = 0.2 \times {N_A} = 0.2 \times 6.022 \times {10^{23}}$
$ = 1.2044 \times {10^{23}}$
Hence the option B is correct, that is $1.2044 \times {10^{23}}$ .
Note : We have approached this problem by calculating the total number of moles in the container. Once we get total number of moles present in the mixture we have multiplied it with Avogadro’s number which is equal to $6.022 \times {10^{23}}$ .As we know that one mole is equal to Avogadro’s number at STP. When \[4.4g\] of $C{O_2}$ and $2.24$ litre of ${H_2}$ at STP are mixed in a container then the total number of molecules present in the container will be $1.2044 \times {10^{23}}$ .
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

