
1/2 mole of helium is contained in a container at STP. How much heat energy is needed to double the pressure of the gas (volume is constant) heat capacity of has is 3J/g/K
(A) 1436
(B) 736
(C) 1638
(D) 5698
Answer
125.4k+ views
Hint: The pressure of a given mass of gas is directly proportional to the absolute temperature provided that the volume is kept constant. Use that relation to calculate the temperature difference of the two different states of the system (the high pressure state and the stp pressure state). Standard temperature is considered as zero degree Celsius or 273 Kelvin.
Formula used: In this solution we will be using the following formulae;
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
\[Q = nM{c_v}\Delta T\] where \[Q\] is the heat absorbed by a gas,\[M\] is the molar mass,\[n\] is the number of moles of the gas, \[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Complete Step-by-Step solution:
To calculate for heat needed, we must first calculate the temperature necessary for the condition to hold.
Generally, it is known that the pressure of a gas is directly proportional to temperature of the gas provided the volume is held constant. Hence
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
Hence, for the first state, we have
\[{P_1} = k{T_1} = 273k\] (since the standard temperature is 373 K)
\[ \Rightarrow k = \dfrac{{{P_1}}}{{273}}\]
For the second state, we have
\[ \Rightarrow 2{P_1} = k{T_2}\]
Inserting the known \[k\] expression, we have
\[2{P_1} = \left( {\dfrac{{{P_1}}}{{273}}} \right){T_2}\]
\[ \Rightarrow 2 = \dfrac{{{T_2}}}{{273}}\]
Hence, we have
\[{T_2} = 2 \times 273 = 546K\]
Now, the heat required can be given by
\[Q = nM{c_v}\Delta T\] where \[n\] is the number of moles of the gas,\[M\] is the molar mass,\[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Hence, we have
\[Q = \left( {0.5} \right)4\left( 3 \right)\left( {546 - 273} \right)\]
By computation,
\[Q = 1638J\]
The correct option is C
Note: Alternatively, instead for calculating for \[k\] and then using its value in the second state, we could simply divide state 1 by state 2, and hence, we have
\[\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{T_1}}}{{{T_2}}}\]
Then by making \[{T_2}\] subject of formula, we have
\[{T_2} = \dfrac{{{P_2}{T_1}}}{{{P_1}}}\]
Hence, by inserting the known values and expressions, we have
\[{T_2} = \dfrac{{2{P_1}\left( {273} \right)}}{{{P_1}}} = 546K\]
Which is identical to what is gotten above.
Formula used: In this solution we will be using the following formulae;
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
\[Q = nM{c_v}\Delta T\] where \[Q\] is the heat absorbed by a gas,\[M\] is the molar mass,\[n\] is the number of moles of the gas, \[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Complete Step-by-Step solution:
To calculate for heat needed, we must first calculate the temperature necessary for the condition to hold.
Generally, it is known that the pressure of a gas is directly proportional to temperature of the gas provided the volume is held constant. Hence
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
Hence, for the first state, we have
\[{P_1} = k{T_1} = 273k\] (since the standard temperature is 373 K)
\[ \Rightarrow k = \dfrac{{{P_1}}}{{273}}\]
For the second state, we have
\[ \Rightarrow 2{P_1} = k{T_2}\]
Inserting the known \[k\] expression, we have
\[2{P_1} = \left( {\dfrac{{{P_1}}}{{273}}} \right){T_2}\]
\[ \Rightarrow 2 = \dfrac{{{T_2}}}{{273}}\]
Hence, we have
\[{T_2} = 2 \times 273 = 546K\]
Now, the heat required can be given by
\[Q = nM{c_v}\Delta T\] where \[n\] is the number of moles of the gas,\[M\] is the molar mass,\[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Hence, we have
\[Q = \left( {0.5} \right)4\left( 3 \right)\left( {546 - 273} \right)\]
By computation,
\[Q = 1638J\]
The correct option is C
Note: Alternatively, instead for calculating for \[k\] and then using its value in the second state, we could simply divide state 1 by state 2, and hence, we have
\[\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{T_1}}}{{{T_2}}}\]
Then by making \[{T_2}\] subject of formula, we have
\[{T_2} = \dfrac{{{P_2}{T_1}}}{{{P_1}}}\]
Hence, by inserting the known values and expressions, we have
\[{T_2} = \dfrac{{2{P_1}\left( {273} \right)}}{{{P_1}}} = 546K\]
Which is identical to what is gotten above.
Recently Updated Pages
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
