Answer
Verified
81.6k+ views
Hint: The pressure of a given mass of gas is directly proportional to the absolute temperature provided that the volume is kept constant. Use that relation to calculate the temperature difference of the two different states of the system (the high pressure state and the stp pressure state). Standard temperature is considered as zero degree Celsius or 273 Kelvin.
Formula used: In this solution we will be using the following formulae;
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
\[Q = nM{c_v}\Delta T\] where \[Q\] is the heat absorbed by a gas,\[M\] is the molar mass,\[n\] is the number of moles of the gas, \[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Complete Step-by-Step solution:
To calculate for heat needed, we must first calculate the temperature necessary for the condition to hold.
Generally, it is known that the pressure of a gas is directly proportional to temperature of the gas provided the volume is held constant. Hence
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
Hence, for the first state, we have
\[{P_1} = k{T_1} = 273k\] (since the standard temperature is 373 K)
\[ \Rightarrow k = \dfrac{{{P_1}}}{{273}}\]
For the second state, we have
\[ \Rightarrow 2{P_1} = k{T_2}\]
Inserting the known \[k\] expression, we have
\[2{P_1} = \left( {\dfrac{{{P_1}}}{{273}}} \right){T_2}\]
\[ \Rightarrow 2 = \dfrac{{{T_2}}}{{273}}\]
Hence, we have
\[{T_2} = 2 \times 273 = 546K\]
Now, the heat required can be given by
\[Q = nM{c_v}\Delta T\] where \[n\] is the number of moles of the gas,\[M\] is the molar mass,\[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Hence, we have
\[Q = \left( {0.5} \right)4\left( 3 \right)\left( {546 - 273} \right)\]
By computation,
\[Q = 1638J\]
The correct option is C
Note: Alternatively, instead for calculating for \[k\] and then using its value in the second state, we could simply divide state 1 by state 2, and hence, we have
\[\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{T_1}}}{{{T_2}}}\]
Then by making \[{T_2}\] subject of formula, we have
\[{T_2} = \dfrac{{{P_2}{T_1}}}{{{P_1}}}\]
Hence, by inserting the known values and expressions, we have
\[{T_2} = \dfrac{{2{P_1}\left( {273} \right)}}{{{P_1}}} = 546K\]
Which is identical to what is gotten above.
Formula used: In this solution we will be using the following formulae;
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
\[Q = nM{c_v}\Delta T\] where \[Q\] is the heat absorbed by a gas,\[M\] is the molar mass,\[n\] is the number of moles of the gas, \[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Complete Step-by-Step solution:
To calculate for heat needed, we must first calculate the temperature necessary for the condition to hold.
Generally, it is known that the pressure of a gas is directly proportional to temperature of the gas provided the volume is held constant. Hence
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
Hence, for the first state, we have
\[{P_1} = k{T_1} = 273k\] (since the standard temperature is 373 K)
\[ \Rightarrow k = \dfrac{{{P_1}}}{{273}}\]
For the second state, we have
\[ \Rightarrow 2{P_1} = k{T_2}\]
Inserting the known \[k\] expression, we have
\[2{P_1} = \left( {\dfrac{{{P_1}}}{{273}}} \right){T_2}\]
\[ \Rightarrow 2 = \dfrac{{{T_2}}}{{273}}\]
Hence, we have
\[{T_2} = 2 \times 273 = 546K\]
Now, the heat required can be given by
\[Q = nM{c_v}\Delta T\] where \[n\] is the number of moles of the gas,\[M\] is the molar mass,\[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Hence, we have
\[Q = \left( {0.5} \right)4\left( 3 \right)\left( {546 - 273} \right)\]
By computation,
\[Q = 1638J\]
The correct option is C
Note: Alternatively, instead for calculating for \[k\] and then using its value in the second state, we could simply divide state 1 by state 2, and hence, we have
\[\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{T_1}}}{{{T_2}}}\]
Then by making \[{T_2}\] subject of formula, we have
\[{T_2} = \dfrac{{{P_2}{T_1}}}{{{P_1}}}\]
Hence, by inserting the known values and expressions, we have
\[{T_2} = \dfrac{{2{P_1}\left( {273} \right)}}{{{P_1}}} = 546K\]
Which is identical to what is gotten above.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main
A rope of 1 cm in diameter breaks if tension in it class 11 physics JEE_Main
Assertion The melting point Mn is more than that of class 11 chemistry JEE_Main