
1/2 mole of helium is contained in a container at STP. How much heat energy is needed to double the pressure of the gas (volume is constant) heat capacity of has is 3J/g/K
(A) 1436
(B) 736
(C) 1638
(D) 5698
Answer
233.1k+ views
Hint: The pressure of a given mass of gas is directly proportional to the absolute temperature provided that the volume is kept constant. Use that relation to calculate the temperature difference of the two different states of the system (the high pressure state and the stp pressure state). Standard temperature is considered as zero degree Celsius or 273 Kelvin.
Formula used: In this solution we will be using the following formulae;
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
\[Q = nM{c_v}\Delta T\] where \[Q\] is the heat absorbed by a gas,\[M\] is the molar mass,\[n\] is the number of moles of the gas, \[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Complete Step-by-Step solution:
To calculate for heat needed, we must first calculate the temperature necessary for the condition to hold.
Generally, it is known that the pressure of a gas is directly proportional to temperature of the gas provided the volume is held constant. Hence
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
Hence, for the first state, we have
\[{P_1} = k{T_1} = 273k\] (since the standard temperature is 373 K)
\[ \Rightarrow k = \dfrac{{{P_1}}}{{273}}\]
For the second state, we have
\[ \Rightarrow 2{P_1} = k{T_2}\]
Inserting the known \[k\] expression, we have
\[2{P_1} = \left( {\dfrac{{{P_1}}}{{273}}} \right){T_2}\]
\[ \Rightarrow 2 = \dfrac{{{T_2}}}{{273}}\]
Hence, we have
\[{T_2} = 2 \times 273 = 546K\]
Now, the heat required can be given by
\[Q = nM{c_v}\Delta T\] where \[n\] is the number of moles of the gas,\[M\] is the molar mass,\[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Hence, we have
\[Q = \left( {0.5} \right)4\left( 3 \right)\left( {546 - 273} \right)\]
By computation,
\[Q = 1638J\]
The correct option is C
Note: Alternatively, instead for calculating for \[k\] and then using its value in the second state, we could simply divide state 1 by state 2, and hence, we have
\[\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{T_1}}}{{{T_2}}}\]
Then by making \[{T_2}\] subject of formula, we have
\[{T_2} = \dfrac{{{P_2}{T_1}}}{{{P_1}}}\]
Hence, by inserting the known values and expressions, we have
\[{T_2} = \dfrac{{2{P_1}\left( {273} \right)}}{{{P_1}}} = 546K\]
Which is identical to what is gotten above.
Formula used: In this solution we will be using the following formulae;
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
\[Q = nM{c_v}\Delta T\] where \[Q\] is the heat absorbed by a gas,\[M\] is the molar mass,\[n\] is the number of moles of the gas, \[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Complete Step-by-Step solution:
To calculate for heat needed, we must first calculate the temperature necessary for the condition to hold.
Generally, it is known that the pressure of a gas is directly proportional to temperature of the gas provided the volume is held constant. Hence
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
Hence, for the first state, we have
\[{P_1} = k{T_1} = 273k\] (since the standard temperature is 373 K)
\[ \Rightarrow k = \dfrac{{{P_1}}}{{273}}\]
For the second state, we have
\[ \Rightarrow 2{P_1} = k{T_2}\]
Inserting the known \[k\] expression, we have
\[2{P_1} = \left( {\dfrac{{{P_1}}}{{273}}} \right){T_2}\]
\[ \Rightarrow 2 = \dfrac{{{T_2}}}{{273}}\]
Hence, we have
\[{T_2} = 2 \times 273 = 546K\]
Now, the heat required can be given by
\[Q = nM{c_v}\Delta T\] where \[n\] is the number of moles of the gas,\[M\] is the molar mass,\[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Hence, we have
\[Q = \left( {0.5} \right)4\left( 3 \right)\left( {546 - 273} \right)\]
By computation,
\[Q = 1638J\]
The correct option is C
Note: Alternatively, instead for calculating for \[k\] and then using its value in the second state, we could simply divide state 1 by state 2, and hence, we have
\[\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{T_1}}}{{{T_2}}}\]
Then by making \[{T_2}\] subject of formula, we have
\[{T_2} = \dfrac{{{P_2}{T_1}}}{{{P_1}}}\]
Hence, by inserting the known values and expressions, we have
\[{T_2} = \dfrac{{2{P_1}\left( {273} \right)}}{{{P_1}}} = 546K\]
Which is identical to what is gotten above.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

