
100 ml of given $KMn{{O}_{4}}$ titrates 50 ml of 0.1M Oxalic acid. Its normality against alkaline ${{H}_{2}}{{O}_{2}}$ is:
A. 0.1 N
B. 0.02 N
C. 0.06 N
D. None of the above
Answer
135.9k+ views
Hint: A certain amount of milliequivalents of $KMn{{O}_{4}}$ will titrate the same amount of milliequivalents of oxalic acid. Also, remember that the n-factor of $KMn{{O}_{4}}$ varies in acidic and basic medium.
Step-by-Step Solution:
Let us first go through the properties of Potassium Permanganate ($KMn{{O}_{4}}$) as a compound.
Potassium permanganate is an inorganic compound with the chemical formula $KMnO_4$ and composed of K+ and $MnO^{4-}$. It is a purplish-black crystalline solid that dissolves in water to give intensely pink or purple solutions.
Potassium permanganate is widely used in the chemical industry and laboratories as a strong oxidizing agent, and also as a medication for dermatitis, for cleaning wounds, and general disinfection.
Having established the properties and usage of $KMn{{O}_{4}}$, let us now move on to the particulars of this question.
Now, we know that Oxalic Acid’s chemical formula is $COOH-COOH$ and due to its presence in the initial titration, the medium would thus be acidic.
However, the later titration is done against alkaline ${{H}_{2}}{{O}_{2}}$ where the medium would be alkaline in nature.
With all this information now at our disposal along with the hint, let us now proceed to the step-by-step solution:
\[\begin{align}
& Milliequivalents\text{ }of\text{ }oxalic\text{ }acid~=50\times 0.1\times 2=10 \\
& \because Initial\text{ }medium\text{ }is\text{ }acidic~(\Rightarrow n=5~for~KMnO4). \\
& \therefore ~Molarity\text{ }of~KMn{{O}_{4}}=\dfrac{N}{5}=\dfrac{\dfrac{10}{100}}{5}=0.02M \\
& In\text{ }alkaline\text{ }medium,~\text{ }n=3~for~KMn{{O}_{4}}~ \\
& Hence,\text{ }normality~=0.02\times 3~=0.06N \\
\end{align}\]
Therefore, by our calculations, we can safely conclude that the required normality of $KMn{{O}_{4}}$ is 0.06N making the answer to this question c) 0.06N.
Note: Absolute caution must be taken during the titrations of any acidic or alkaline substance, regardless of its strength, so as to avoid any form of injury or damage. Also make sure that no mistakes are made in the n- factor calculation of Potassium Permanganate w.r.t change in mediums.
Step-by-Step Solution:
Let us first go through the properties of Potassium Permanganate ($KMn{{O}_{4}}$) as a compound.
Potassium permanganate is an inorganic compound with the chemical formula $KMnO_4$ and composed of K+ and $MnO^{4-}$. It is a purplish-black crystalline solid that dissolves in water to give intensely pink or purple solutions.
Potassium permanganate is widely used in the chemical industry and laboratories as a strong oxidizing agent, and also as a medication for dermatitis, for cleaning wounds, and general disinfection.
Having established the properties and usage of $KMn{{O}_{4}}$, let us now move on to the particulars of this question.
Now, we know that Oxalic Acid’s chemical formula is $COOH-COOH$ and due to its presence in the initial titration, the medium would thus be acidic.
However, the later titration is done against alkaline ${{H}_{2}}{{O}_{2}}$ where the medium would be alkaline in nature.
With all this information now at our disposal along with the hint, let us now proceed to the step-by-step solution:
\[\begin{align}
& Milliequivalents\text{ }of\text{ }oxalic\text{ }acid~=50\times 0.1\times 2=10 \\
& \because Initial\text{ }medium\text{ }is\text{ }acidic~(\Rightarrow n=5~for~KMnO4). \\
& \therefore ~Molarity\text{ }of~KMn{{O}_{4}}=\dfrac{N}{5}=\dfrac{\dfrac{10}{100}}{5}=0.02M \\
& In\text{ }alkaline\text{ }medium,~\text{ }n=3~for~KMn{{O}_{4}}~ \\
& Hence,\text{ }normality~=0.02\times 3~=0.06N \\
\end{align}\]
Therefore, by our calculations, we can safely conclude that the required normality of $KMn{{O}_{4}}$ is 0.06N making the answer to this question c) 0.06N.
Note: Absolute caution must be taken during the titrations of any acidic or alkaline substance, regardless of its strength, so as to avoid any form of injury or damage. Also make sure that no mistakes are made in the n- factor calculation of Potassium Permanganate w.r.t change in mediums.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Collision - Important Concepts and Tips for JEE

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

Thermodynamics Class 11 Notes: CBSE Chapter 5
