
1) Define conservative forces.
2) value of $\left[ {\left( {\widehat i \times \widehat j} \right) \times \left( {\widehat j \times \widehat k} \right)} \right] = $
Answer
147.3k+ views
Hint
1. We divide forces into two categories first is conservative forces and other is non conservative forces. If the work done by a force during a round trip of a system is always zero, the force is said to be conservative. Otherwise, it is called non conservative.
2. The cross product of two vectors $\overrightarrow a $ and $\overrightarrow b $ , denoted by $\overrightarrow a \times \overrightarrow b $ is itself a vector. The magnitude of this vector is $\left| {\overrightarrow a \times \overrightarrow b } \right| = ab\sin \theta \widehat n$ Where, $\theta $ is the angle between vectors. And $\widehat n$is direction i.e. perpendicular to both the vectors.
Complete Step by step solution
Conservative force: If the work done by a force during a round trip of a system is always zero, the force is conservative. Also, if the work done by a force depends only on the initial and final states and not on the path taken, it is conservative force.
Thus, the force of gravity, coulomb force and all the forces of spring are conservative forces, as the work done by these forces are zero in a round trip. The force of friction is non conservative because the work done by the friction is not zero in a round trip.
The cross product of two vectors $\overrightarrow a $ and $\overrightarrow b $ , denoted by $\overrightarrow a \times \overrightarrow b $ is itself a vector. The magnitude of this vector is
$\left| {\overrightarrow a \times \overrightarrow b } \right| = ab\sin \theta \widehat n$
Here, magnitude of vectors is $1$ since all the vectors given are unit vectors and all these vectors are mutually perpendicular hence angle between them is ${90^o}$ .
Therefore, we have
$\left( {\widehat i \times \widehat j} \right) = \widehat k$ and $\left( {\widehat j \times \widehat k} \right) = \widehat i$
Hence,
$\left[ {\left( {\widehat i \times \widehat j} \right) \times \left( {\widehat j \times \widehat k} \right)} \right] = \left[ {\widehat k \times \widehat i} \right]$
Now $\left[ {\widehat k \times \widehat i} \right] = \widehat j$
Hence, $\left[ {\left( {\widehat i \times \widehat j} \right) \times \left( {\widehat j \times \widehat k} \right)} \right] = \widehat j$
Note
1. For conservative forces, mechanical energy remains conserved. If the internal forces are conservative then work done by external forces is equal to the change in mechanical energy. If some of the forces are non-conservative then mechanical energy of the system is not conserved.
2. The direction of $\overrightarrow a \times \overrightarrow b $ is perpendicular to both $\overrightarrow a $ and \[\overrightarrow b \] . we use right hand thumb rule to determine the direction of $\overrightarrow a \times \overrightarrow b $ . in that we have to place our stretched right palm perpendicular to the plane of $\overrightarrow a $ and \[\overrightarrow b \] in such a way that the fingers are along the vector $\overrightarrow a $ and when the fingers are closed they go towards \[\overrightarrow b \] . the direction of the thumb gives the direction of the arrow to be put on the vector $\overrightarrow a \times \overrightarrow b $ .
This is known as the right hand thumb rule.
1. We divide forces into two categories first is conservative forces and other is non conservative forces. If the work done by a force during a round trip of a system is always zero, the force is said to be conservative. Otherwise, it is called non conservative.
2. The cross product of two vectors $\overrightarrow a $ and $\overrightarrow b $ , denoted by $\overrightarrow a \times \overrightarrow b $ is itself a vector. The magnitude of this vector is $\left| {\overrightarrow a \times \overrightarrow b } \right| = ab\sin \theta \widehat n$ Where, $\theta $ is the angle between vectors. And $\widehat n$is direction i.e. perpendicular to both the vectors.
Complete Step by step solution
Conservative force: If the work done by a force during a round trip of a system is always zero, the force is conservative. Also, if the work done by a force depends only on the initial and final states and not on the path taken, it is conservative force.
Thus, the force of gravity, coulomb force and all the forces of spring are conservative forces, as the work done by these forces are zero in a round trip. The force of friction is non conservative because the work done by the friction is not zero in a round trip.
The cross product of two vectors $\overrightarrow a $ and $\overrightarrow b $ , denoted by $\overrightarrow a \times \overrightarrow b $ is itself a vector. The magnitude of this vector is
$\left| {\overrightarrow a \times \overrightarrow b } \right| = ab\sin \theta \widehat n$
Here, magnitude of vectors is $1$ since all the vectors given are unit vectors and all these vectors are mutually perpendicular hence angle between them is ${90^o}$ .
Therefore, we have
$\left( {\widehat i \times \widehat j} \right) = \widehat k$ and $\left( {\widehat j \times \widehat k} \right) = \widehat i$
Hence,
$\left[ {\left( {\widehat i \times \widehat j} \right) \times \left( {\widehat j \times \widehat k} \right)} \right] = \left[ {\widehat k \times \widehat i} \right]$
Now $\left[ {\widehat k \times \widehat i} \right] = \widehat j$
Hence, $\left[ {\left( {\widehat i \times \widehat j} \right) \times \left( {\widehat j \times \widehat k} \right)} \right] = \widehat j$
Note
1. For conservative forces, mechanical energy remains conserved. If the internal forces are conservative then work done by external forces is equal to the change in mechanical energy. If some of the forces are non-conservative then mechanical energy of the system is not conserved.
2. The direction of $\overrightarrow a \times \overrightarrow b $ is perpendicular to both $\overrightarrow a $ and \[\overrightarrow b \] . we use right hand thumb rule to determine the direction of $\overrightarrow a \times \overrightarrow b $ . in that we have to place our stretched right palm perpendicular to the plane of $\overrightarrow a $ and \[\overrightarrow b \] in such a way that the fingers are along the vector $\overrightarrow a $ and when the fingers are closed they go towards \[\overrightarrow b \] . the direction of the thumb gives the direction of the arrow to be put on the vector $\overrightarrow a \times \overrightarrow b $ .
This is known as the right hand thumb rule.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
