
1 cm on the main scale of Vernier callipers is divided into 10 equal parts, if 10 vernier scales coincide with 8 small divisions of main scale, then the least count of the calliper is
(A) \[0.01cm\]
(B) \[0.02cm\]
(C) \[0.05cm\]
(D) \[0.005cm\]
Answer
219k+ views
Hint: The least count is directly related to the width of each division of the main scale. 10 divisions of the Vernier scale coincides with 8 divisions of the main scale, the least count is proportional to ratio of the difference to the number of divisions of the Vernier scale.
Formula used: In this solution we will be using the following formulae;
\[MR = \dfrac{L}{N}\] where \[MR\] signifies minimum reading of the main scale, \[L\] is the length of a section of the main scale and \[N\] is the number of division in that section.
\[LC = \dfrac{{MR}}{n}\] where \[LC\] is the least count (without coincidence error)\[n\] is the number of divisions on the Vernier scale
Complete Step-by-Step solution:
To calculate the least count, we find the smallest reading on the main scale. This is equal to the length of a particular section of the Vernier calliper’s main scale divided by the number of divisions of that section. In the question, we are told a 1 cm section is divided into 10 divisions, i.e.
$\Rightarrow$ \[MR = \dfrac{L}{N}\] where \[MR\] signifies minimum reading of the main scale, \[L\] is the length of a section of the main scale and \[N\] is the number of division in that section.
Hence, we have
$\Rightarrow$ \[MR = \dfrac{{1cm}}{{10}} = 0.1cm\]
Least count can be defined as
$\Rightarrow$ \[LC = \dfrac{{MR}}{n}\] where \[n\] is the number of divisions on the Vernier scale
$\Rightarrow$ \[LC = \dfrac{{0.1cm}}{{10}} = 0.01cm\]
Nonetheless, the least count will be increased due to the “coincidence error”. Only eight divisions coincide with 10 divisions, hence, coincidence error is \[10 - 8 = 2\]
Hence, true \[LC\] would be
\[LC = 0.01cm \times 2 = 0.02cm\]
Hence, the correct option is B,
Note: Alternatively, we can simply use the relation
\[LC = MR - M{r_v}\] where \[M{r_v}\] is the minimum reading of the Vernier scale.
Since only 8 coincides, then only 8 can be read, then \[M{r_v}\] would be
\[M{r_v} = \dfrac{{8mm}}{{10}} = 0.8mm = 0.08cm\]
Hence,
\[LC = MR - M{r_v} = 0.1cm - 0.08cm = 0.02cm\]
Formula used: In this solution we will be using the following formulae;
\[MR = \dfrac{L}{N}\] where \[MR\] signifies minimum reading of the main scale, \[L\] is the length of a section of the main scale and \[N\] is the number of division in that section.
\[LC = \dfrac{{MR}}{n}\] where \[LC\] is the least count (without coincidence error)\[n\] is the number of divisions on the Vernier scale
Complete Step-by-Step solution:
To calculate the least count, we find the smallest reading on the main scale. This is equal to the length of a particular section of the Vernier calliper’s main scale divided by the number of divisions of that section. In the question, we are told a 1 cm section is divided into 10 divisions, i.e.
$\Rightarrow$ \[MR = \dfrac{L}{N}\] where \[MR\] signifies minimum reading of the main scale, \[L\] is the length of a section of the main scale and \[N\] is the number of division in that section.
Hence, we have
$\Rightarrow$ \[MR = \dfrac{{1cm}}{{10}} = 0.1cm\]
Least count can be defined as
$\Rightarrow$ \[LC = \dfrac{{MR}}{n}\] where \[n\] is the number of divisions on the Vernier scale
$\Rightarrow$ \[LC = \dfrac{{0.1cm}}{{10}} = 0.01cm\]
Nonetheless, the least count will be increased due to the “coincidence error”. Only eight divisions coincide with 10 divisions, hence, coincidence error is \[10 - 8 = 2\]
Hence, true \[LC\] would be
\[LC = 0.01cm \times 2 = 0.02cm\]
Hence, the correct option is B,
Note: Alternatively, we can simply use the relation
\[LC = MR - M{r_v}\] where \[M{r_v}\] is the minimum reading of the Vernier scale.
Since only 8 coincides, then only 8 can be read, then \[M{r_v}\] would be
\[M{r_v} = \dfrac{{8mm}}{{10}} = 0.8mm = 0.08cm\]
Hence,
\[LC = MR - M{r_v} = 0.1cm - 0.08cm = 0.02cm\]
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

