
+R power of the given groups is in the order:

(a) 1 > 2 > 3 > 4
(b) 4 > 3 > 2 > 1
(c) 1 > 3 > 2 > 4
(d) 1 > 4 > 3 > 2
Answer
168.9k+ views
Hint: The higher the electron density and lesser the electronegativity, higher is the ability for +R groups. Now, apply this concept to the given question.
Complete Step-by-Step Solution:
Let us first look at mesomeric (resonance) effects in detail, so as to apply these concepts to help solve this question.
>The electron withdrawing or releasing effect attributed to a substituent through delocalization of π electrons, which can be visualized by drawing various canonical forms, is known as mesomeric effect or resonance effect. It is symbolized by M or R.
1) Negative resonance or mesomeric effect (-M or -R): It is shown by substituents or groups that withdraw electrons by delocalization mechanism from the rest of the molecule and are denoted by -M or -R. The electron density on the rest of the molecular entity is decreased due to this effect.
E.g. \[-N{{O}_{2}}\], Carbonyl group (C=O), -C≡N, -COOH, \[-S{{O}_{3}}H\] etc.
2) Positive resonance or mesomeric effect (+M or +R): These groups show positive mesomeric effect when they release electrons to the rest of the molecule by delocalization. These groups are denoted by +M or +R. Due to this effect, the electron density on the rest of the molecular entity is increased.
E.g. -OH, -OR, -SH, -SR, \[N{{H}_{2}}\], \[-N{{R}_{2}}~\] etc.
Now, let us apply these concepts to the given +R groups.
> Of all these groups, $-{{O}^{-}}$ has the highest electron density, making it the most effective +R group.
> The \[-NHCOC{{H}_{3}}\] group is stabilised by resonance and thus possesses the least electron density of the given groups. Therefore, it is the least effective +R group.
> Now, analysing \[-N{{H}_{2}}\] and -OH, of the two the latter is significantly more electronegative than the former due to Oxygen being much more electronegative than Nitrogen. Therefore, \[-N{{H}_{2}}\]is a much better +R group than -OH.
With this analysis, we can safely conclude that the order of +R effect is 1 > 2 > 3 > 4.
Therefore, the answer is a).
Note: In general, when it comes to organic chemistry, be very careful between the differences in Inductive and Resonance effect as in most cases, resonance effect is stronger and outweighs inductive effect.
For example, the -OH and \[-N{{H}_{2}}\] groups withdraw electrons by inductive effect (-I). However, they also release electrons by delocalization of lone pairs (+R effect). Since the resonance effect is stronger than the inductive effect the net result is electron releasing to the rest of the molecule.
Complete Step-by-Step Solution:
Let us first look at mesomeric (resonance) effects in detail, so as to apply these concepts to help solve this question.
>The electron withdrawing or releasing effect attributed to a substituent through delocalization of π electrons, which can be visualized by drawing various canonical forms, is known as mesomeric effect or resonance effect. It is symbolized by M or R.
1) Negative resonance or mesomeric effect (-M or -R): It is shown by substituents or groups that withdraw electrons by delocalization mechanism from the rest of the molecule and are denoted by -M or -R. The electron density on the rest of the molecular entity is decreased due to this effect.
E.g. \[-N{{O}_{2}}\], Carbonyl group (C=O), -C≡N, -COOH, \[-S{{O}_{3}}H\] etc.
2) Positive resonance or mesomeric effect (+M or +R): These groups show positive mesomeric effect when they release electrons to the rest of the molecule by delocalization. These groups are denoted by +M or +R. Due to this effect, the electron density on the rest of the molecular entity is increased.
E.g. -OH, -OR, -SH, -SR, \[N{{H}_{2}}\], \[-N{{R}_{2}}~\] etc.
Now, let us apply these concepts to the given +R groups.
> Of all these groups, $-{{O}^{-}}$ has the highest electron density, making it the most effective +R group.
> The \[-NHCOC{{H}_{3}}\] group is stabilised by resonance and thus possesses the least electron density of the given groups. Therefore, it is the least effective +R group.
> Now, analysing \[-N{{H}_{2}}\] and -OH, of the two the latter is significantly more electronegative than the former due to Oxygen being much more electronegative than Nitrogen. Therefore, \[-N{{H}_{2}}\]is a much better +R group than -OH.
With this analysis, we can safely conclude that the order of +R effect is 1 > 2 > 3 > 4.
Therefore, the answer is a).
Note: In general, when it comes to organic chemistry, be very careful between the differences in Inductive and Resonance effect as in most cases, resonance effect is stronger and outweighs inductive effect.
For example, the -OH and \[-N{{H}_{2}}\] groups withdraw electrons by inductive effect (-I). However, they also release electrons by delocalization of lone pairs (+R effect). Since the resonance effect is stronger than the inductive effect the net result is electron releasing to the rest of the molecule.
Recently Updated Pages
Hydrocarbons: Types, Formula, Structure & Examples Explained

Classification of Elements and Periodicity in Properties | Trends, Notes & FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Instantaneous Velocity - Formula based Examples for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Types of Solutions

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
