
Which of the following is true for the matrix \[A = \left[ {\begin{array}{*{20}{c}}i&{1 - 2i}\\{ - 1 - 2i}&0\end{array}} \right]\].
A. Symmetric
B. Skew- Symmetric
C. Hermitian
D. Skew-Hermitian
Answer
232.8k+ views
Hint:We will find the transpose of the given matrix. Then check whether the transpose matrix is equal to A or -A, to determine whether the matrix is symmetric or skew-symmetric. Then We will find the conjugate of the transpose matrix, to check whether the given matrix is a Hermitian or Skew-Hermitian
Formula used:
Symmetric matrix: \[{A^T} = A\]
Skew Symmetric matrix: \[{A^T} = - A\]
Hermitian: \[{\left( {\overline A } \right)^T} = A\]
Skew Hermitian: \[{\left( {\overline A } \right)^T} = - A\]
Complete step by step solution:
Given matrix is \[A = \left[ {\begin{array}{*{20}{c}}i&{1 - 2i}\\{ - 1 - 2i}&0\end{array}} \right]\].
Now we will find the transpose of the matrix by converting the row into a column.
\[{A^T} = \left[ {\begin{array}{*{20}{c}}i&{ - 1 - 2i}\\{1 - 2i}&0\end{array}} \right]\]
Since \[{A^T} \ne A\] and \[{A^T} \ne - A\], thus A is neither a symmetric matrix nor a skew-symmetric matrix.
To find the conjugate of \[{A^T}\], we will change the sign of the imaginary part of all elements of the matrix.
\[{\left( {\overline A } \right)^T} = \left[ {\begin{array}{*{20}{c}}{ - i}&{ - 1 + 2i}\\{1 + 2i}&0\end{array}} \right]\]
\[{\left( {\overline A } \right)^T} = \left[ {\begin{array}{*{20}{c}}{ - i}&{ - \left( {1 - 2i} \right)}\\{ - \left( { - 1 - 2i} \right)}&0\end{array}} \right]\]
\[ \Rightarrow {\left( {\overline A } \right)^T} = - \left[ {\begin{array}{*{20}{c}}i&{\left( {1 - 2i} \right)}\\{\left( { - 1 - 2i} \right)}&0\end{array}} \right]\]
\[ \Rightarrow {\left( {\overline A } \right)^T} = - A\]
Thus, the given matrix is skew Hermitian.
Hence option D is the correct option
Note: In the hermitian, we find the conjugate of the transpose matrix of the given matrix. Hermitian is applicable when at least one of the elements of the matrix complex. To solve the given question first we find the transpose of the given matrix and identify the complex number. Then write the conjugate of the complex numbers in place of complex numbers.
Formula used:
Symmetric matrix: \[{A^T} = A\]
Skew Symmetric matrix: \[{A^T} = - A\]
Hermitian: \[{\left( {\overline A } \right)^T} = A\]
Skew Hermitian: \[{\left( {\overline A } \right)^T} = - A\]
Complete step by step solution:
Given matrix is \[A = \left[ {\begin{array}{*{20}{c}}i&{1 - 2i}\\{ - 1 - 2i}&0\end{array}} \right]\].
Now we will find the transpose of the matrix by converting the row into a column.
\[{A^T} = \left[ {\begin{array}{*{20}{c}}i&{ - 1 - 2i}\\{1 - 2i}&0\end{array}} \right]\]
Since \[{A^T} \ne A\] and \[{A^T} \ne - A\], thus A is neither a symmetric matrix nor a skew-symmetric matrix.
To find the conjugate of \[{A^T}\], we will change the sign of the imaginary part of all elements of the matrix.
\[{\left( {\overline A } \right)^T} = \left[ {\begin{array}{*{20}{c}}{ - i}&{ - 1 + 2i}\\{1 + 2i}&0\end{array}} \right]\]
\[{\left( {\overline A } \right)^T} = \left[ {\begin{array}{*{20}{c}}{ - i}&{ - \left( {1 - 2i} \right)}\\{ - \left( { - 1 - 2i} \right)}&0\end{array}} \right]\]
\[ \Rightarrow {\left( {\overline A } \right)^T} = - \left[ {\begin{array}{*{20}{c}}i&{\left( {1 - 2i} \right)}\\{\left( { - 1 - 2i} \right)}&0\end{array}} \right]\]
\[ \Rightarrow {\left( {\overline A } \right)^T} = - A\]
Thus, the given matrix is skew Hermitian.
Hence option D is the correct option
Note: In the hermitian, we find the conjugate of the transpose matrix of the given matrix. Hermitian is applicable when at least one of the elements of the matrix complex. To solve the given question first we find the transpose of the given matrix and identify the complex number. Then write the conjugate of the complex numbers in place of complex numbers.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

