
Let \[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\] , and \[\left( {10} \right)B = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\]. If \[B\] is the inverse of matrix \[A\], then what is the value of \[\alpha \]?
A. 5
B. \[ - 1\]
C. 2
D. \[ - 2\]
Answer
162.3k+ views
Hint: First, use the given information \[B\] is the inverse of matrix \[A\] and calculate the value of \[10{A^{ - 1}}\]. Then multiply both sides by the matrix \[A\] and simplify the equation. After that apply the identity \[A{A^{ - 1}} = A{A^{ - 1}} = I\] and further simplify the equation. In the end, substitute the values of the matrices in the equation and solve it to get the required answer
Formula used:
For a non-singular square matrix \[A\], \[A{A^{ - 1}} = A{A^{ - 1}} = I\]
Complete step by step solution:
The given matrices are
\[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\] \[.....\left( 1 \right)\]
\[\left( {10} \right)B = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\] \[.....\left( 2 \right)\]
Let’s apply the given information \[B\] is the inverse of matrix \[A\].
We get,
\[{A^{ - 1}} = B\]
Substitute the values in the equation \[\left( 2 \right)\].
\[\left( {10} \right){A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\]
Now multiply both sides by the matrix \[A\].
\[\left( {10} \right){A^{ - 1}}A = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]A\]
Use the identity \[A{A^{ - 1}} = A{A^{ - 1}} = I\].
\[\left( {10} \right)I = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]A\]
Now substitute the values in the above equation.
\[\left( {10} \right)\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\]
Apply the scalar and matrix multiplication properties of the matrices.
\[\left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\left( {4 \times 1} \right) + \left( {2 \times 1} \right) + \left( {2 \times 1} \right)}&{\left( {4 \times - 1} \right) + \left( {2 \times 1} \right) + \left( {2 \times 1} \right)}&{\left( {4 \times 1} \right) + \left( {2 \times - 3} \right) + \left( {2 \times 1} \right)}\\{\left( { - 5 \times 1} \right) + \left( {0 \times 2} \right) + \left( {\alpha \times 1} \right)}&{\left( { - 5 \times - 1} \right) + \left( {0 \times 1} \right) + \left( {\alpha \times 1} \right)}&{\left( { - 5 \times 1} \right) + \left( {0 \times - 3} \right) + \left( {\alpha \times 1} \right)}\\{\left( {1 \times 1} \right) + \left( { - 2 \times 2} \right) + \left( {3 \times 1} \right)}&{\left( {1 \times - 1} \right) + \left( { - 2 \times 1} \right) + \left( {3 \times 1} \right)}&{\left( {1 \times 1} \right) + \left( { - 2 \times - 3} \right) + \left( {3 \times 1} \right)}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{4 + 2 + 2}&{ - 4 + 2 + 2}&{4 - 6 + 2}\\{ - 5 + \alpha }&{5 + \alpha }&{ - 5 + \alpha }\\{1 - 4 + 3}&{ - 1 - 2 + 3}&{1 + 6 + 3}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{10}&0&0\\{\alpha - 5}&{\alpha + 5}&{\alpha - 5}\\0&0&{10}\end{array}} \right]\]
Now compare both sides.
We get,
\[\alpha - 5 = 0\]
\[ \Rightarrow \alpha = 5\]
Hence the correct option is A.
Note: Students often get confused about the matrix multiplication. The product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. We can equate the matrices only if both the matrices have the same number of rows and the same number of columns, only then the corresponding elements of both matrices will be equal.
Formula used:
For a non-singular square matrix \[A\], \[A{A^{ - 1}} = A{A^{ - 1}} = I\]
Complete step by step solution:
The given matrices are
\[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\] \[.....\left( 1 \right)\]
\[\left( {10} \right)B = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\] \[.....\left( 2 \right)\]
Let’s apply the given information \[B\] is the inverse of matrix \[A\].
We get,
\[{A^{ - 1}} = B\]
Substitute the values in the equation \[\left( 2 \right)\].
\[\left( {10} \right){A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\]
Now multiply both sides by the matrix \[A\].
\[\left( {10} \right){A^{ - 1}}A = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]A\]
Use the identity \[A{A^{ - 1}} = A{A^{ - 1}} = I\].
\[\left( {10} \right)I = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]A\]
Now substitute the values in the above equation.
\[\left( {10} \right)\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\]
Apply the scalar and matrix multiplication properties of the matrices.
\[\left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\left( {4 \times 1} \right) + \left( {2 \times 1} \right) + \left( {2 \times 1} \right)}&{\left( {4 \times - 1} \right) + \left( {2 \times 1} \right) + \left( {2 \times 1} \right)}&{\left( {4 \times 1} \right) + \left( {2 \times - 3} \right) + \left( {2 \times 1} \right)}\\{\left( { - 5 \times 1} \right) + \left( {0 \times 2} \right) + \left( {\alpha \times 1} \right)}&{\left( { - 5 \times - 1} \right) + \left( {0 \times 1} \right) + \left( {\alpha \times 1} \right)}&{\left( { - 5 \times 1} \right) + \left( {0 \times - 3} \right) + \left( {\alpha \times 1} \right)}\\{\left( {1 \times 1} \right) + \left( { - 2 \times 2} \right) + \left( {3 \times 1} \right)}&{\left( {1 \times - 1} \right) + \left( { - 2 \times 1} \right) + \left( {3 \times 1} \right)}&{\left( {1 \times 1} \right) + \left( { - 2 \times - 3} \right) + \left( {3 \times 1} \right)}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{4 + 2 + 2}&{ - 4 + 2 + 2}&{4 - 6 + 2}\\{ - 5 + \alpha }&{5 + \alpha }&{ - 5 + \alpha }\\{1 - 4 + 3}&{ - 1 - 2 + 3}&{1 + 6 + 3}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{10}&0&0\\{\alpha - 5}&{\alpha + 5}&{\alpha - 5}\\0&0&{10}\end{array}} \right]\]
Now compare both sides.
We get,
\[\alpha - 5 = 0\]
\[ \Rightarrow \alpha = 5\]
Hence the correct option is A.
Note: Students often get confused about the matrix multiplication. The product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. We can equate the matrices only if both the matrices have the same number of rows and the same number of columns, only then the corresponding elements of both matrices will be equal.
Recently Updated Pages
JEE Advanced Course 2025 - Subject List, Syllabus, Course, Details

Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
