
Let \[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\] , and \[\left( {10} \right)B = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\]. If \[B\] is the inverse of matrix \[A\], then what is the value of \[\alpha \]?
A. 5
B. \[ - 1\]
C. 2
D. \[ - 2\]
Answer
233.1k+ views
Hint: First, use the given information \[B\] is the inverse of matrix \[A\] and calculate the value of \[10{A^{ - 1}}\]. Then multiply both sides by the matrix \[A\] and simplify the equation. After that apply the identity \[A{A^{ - 1}} = A{A^{ - 1}} = I\] and further simplify the equation. In the end, substitute the values of the matrices in the equation and solve it to get the required answer
Formula used:
For a non-singular square matrix \[A\], \[A{A^{ - 1}} = A{A^{ - 1}} = I\]
Complete step by step solution:
The given matrices are
\[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\] \[.....\left( 1 \right)\]
\[\left( {10} \right)B = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\] \[.....\left( 2 \right)\]
Let’s apply the given information \[B\] is the inverse of matrix \[A\].
We get,
\[{A^{ - 1}} = B\]
Substitute the values in the equation \[\left( 2 \right)\].
\[\left( {10} \right){A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\]
Now multiply both sides by the matrix \[A\].
\[\left( {10} \right){A^{ - 1}}A = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]A\]
Use the identity \[A{A^{ - 1}} = A{A^{ - 1}} = I\].
\[\left( {10} \right)I = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]A\]
Now substitute the values in the above equation.
\[\left( {10} \right)\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\]
Apply the scalar and matrix multiplication properties of the matrices.
\[\left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\left( {4 \times 1} \right) + \left( {2 \times 1} \right) + \left( {2 \times 1} \right)}&{\left( {4 \times - 1} \right) + \left( {2 \times 1} \right) + \left( {2 \times 1} \right)}&{\left( {4 \times 1} \right) + \left( {2 \times - 3} \right) + \left( {2 \times 1} \right)}\\{\left( { - 5 \times 1} \right) + \left( {0 \times 2} \right) + \left( {\alpha \times 1} \right)}&{\left( { - 5 \times - 1} \right) + \left( {0 \times 1} \right) + \left( {\alpha \times 1} \right)}&{\left( { - 5 \times 1} \right) + \left( {0 \times - 3} \right) + \left( {\alpha \times 1} \right)}\\{\left( {1 \times 1} \right) + \left( { - 2 \times 2} \right) + \left( {3 \times 1} \right)}&{\left( {1 \times - 1} \right) + \left( { - 2 \times 1} \right) + \left( {3 \times 1} \right)}&{\left( {1 \times 1} \right) + \left( { - 2 \times - 3} \right) + \left( {3 \times 1} \right)}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{4 + 2 + 2}&{ - 4 + 2 + 2}&{4 - 6 + 2}\\{ - 5 + \alpha }&{5 + \alpha }&{ - 5 + \alpha }\\{1 - 4 + 3}&{ - 1 - 2 + 3}&{1 + 6 + 3}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{10}&0&0\\{\alpha - 5}&{\alpha + 5}&{\alpha - 5}\\0&0&{10}\end{array}} \right]\]
Now compare both sides.
We get,
\[\alpha - 5 = 0\]
\[ \Rightarrow \alpha = 5\]
Hence the correct option is A.
Note: Students often get confused about the matrix multiplication. The product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. We can equate the matrices only if both the matrices have the same number of rows and the same number of columns, only then the corresponding elements of both matrices will be equal.
Formula used:
For a non-singular square matrix \[A\], \[A{A^{ - 1}} = A{A^{ - 1}} = I\]
Complete step by step solution:
The given matrices are
\[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\] \[.....\left( 1 \right)\]
\[\left( {10} \right)B = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\] \[.....\left( 2 \right)\]
Let’s apply the given information \[B\] is the inverse of matrix \[A\].
We get,
\[{A^{ - 1}} = B\]
Substitute the values in the equation \[\left( 2 \right)\].
\[\left( {10} \right){A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\]
Now multiply both sides by the matrix \[A\].
\[\left( {10} \right){A^{ - 1}}A = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]A\]
Use the identity \[A{A^{ - 1}} = A{A^{ - 1}} = I\].
\[\left( {10} \right)I = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]A\]
Now substitute the values in the above equation.
\[\left( {10} \right)\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\]
Apply the scalar and matrix multiplication properties of the matrices.
\[\left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\left( {4 \times 1} \right) + \left( {2 \times 1} \right) + \left( {2 \times 1} \right)}&{\left( {4 \times - 1} \right) + \left( {2 \times 1} \right) + \left( {2 \times 1} \right)}&{\left( {4 \times 1} \right) + \left( {2 \times - 3} \right) + \left( {2 \times 1} \right)}\\{\left( { - 5 \times 1} \right) + \left( {0 \times 2} \right) + \left( {\alpha \times 1} \right)}&{\left( { - 5 \times - 1} \right) + \left( {0 \times 1} \right) + \left( {\alpha \times 1} \right)}&{\left( { - 5 \times 1} \right) + \left( {0 \times - 3} \right) + \left( {\alpha \times 1} \right)}\\{\left( {1 \times 1} \right) + \left( { - 2 \times 2} \right) + \left( {3 \times 1} \right)}&{\left( {1 \times - 1} \right) + \left( { - 2 \times 1} \right) + \left( {3 \times 1} \right)}&{\left( {1 \times 1} \right) + \left( { - 2 \times - 3} \right) + \left( {3 \times 1} \right)}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{4 + 2 + 2}&{ - 4 + 2 + 2}&{4 - 6 + 2}\\{ - 5 + \alpha }&{5 + \alpha }&{ - 5 + \alpha }\\{1 - 4 + 3}&{ - 1 - 2 + 3}&{1 + 6 + 3}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{10}&0&0\\{\alpha - 5}&{\alpha + 5}&{\alpha - 5}\\0&0&{10}\end{array}} \right]\]
Now compare both sides.
We get,
\[\alpha - 5 = 0\]
\[ \Rightarrow \alpha = 5\]
Hence the correct option is A.
Note: Students often get confused about the matrix multiplication. The product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. We can equate the matrices only if both the matrices have the same number of rows and the same number of columns, only then the corresponding elements of both matrices will be equal.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

