
Let \[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\] , and \[\left( {10} \right)B = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\]. If \[B\] is the inverse of matrix \[A\], then what is the value of \[\alpha \]?
A. 5
B. \[ - 1\]
C. 2
D. \[ - 2\]
Answer
216k+ views
Hint: First, use the given information \[B\] is the inverse of matrix \[A\] and calculate the value of \[10{A^{ - 1}}\]. Then multiply both sides by the matrix \[A\] and simplify the equation. After that apply the identity \[A{A^{ - 1}} = A{A^{ - 1}} = I\] and further simplify the equation. In the end, substitute the values of the matrices in the equation and solve it to get the required answer
Formula used:
For a non-singular square matrix \[A\], \[A{A^{ - 1}} = A{A^{ - 1}} = I\]
Complete step by step solution:
The given matrices are
\[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\] \[.....\left( 1 \right)\]
\[\left( {10} \right)B = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\] \[.....\left( 2 \right)\]
Let’s apply the given information \[B\] is the inverse of matrix \[A\].
We get,
\[{A^{ - 1}} = B\]
Substitute the values in the equation \[\left( 2 \right)\].
\[\left( {10} \right){A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\]
Now multiply both sides by the matrix \[A\].
\[\left( {10} \right){A^{ - 1}}A = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]A\]
Use the identity \[A{A^{ - 1}} = A{A^{ - 1}} = I\].
\[\left( {10} \right)I = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]A\]
Now substitute the values in the above equation.
\[\left( {10} \right)\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\]
Apply the scalar and matrix multiplication properties of the matrices.
\[\left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\left( {4 \times 1} \right) + \left( {2 \times 1} \right) + \left( {2 \times 1} \right)}&{\left( {4 \times - 1} \right) + \left( {2 \times 1} \right) + \left( {2 \times 1} \right)}&{\left( {4 \times 1} \right) + \left( {2 \times - 3} \right) + \left( {2 \times 1} \right)}\\{\left( { - 5 \times 1} \right) + \left( {0 \times 2} \right) + \left( {\alpha \times 1} \right)}&{\left( { - 5 \times - 1} \right) + \left( {0 \times 1} \right) + \left( {\alpha \times 1} \right)}&{\left( { - 5 \times 1} \right) + \left( {0 \times - 3} \right) + \left( {\alpha \times 1} \right)}\\{\left( {1 \times 1} \right) + \left( { - 2 \times 2} \right) + \left( {3 \times 1} \right)}&{\left( {1 \times - 1} \right) + \left( { - 2 \times 1} \right) + \left( {3 \times 1} \right)}&{\left( {1 \times 1} \right) + \left( { - 2 \times - 3} \right) + \left( {3 \times 1} \right)}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{4 + 2 + 2}&{ - 4 + 2 + 2}&{4 - 6 + 2}\\{ - 5 + \alpha }&{5 + \alpha }&{ - 5 + \alpha }\\{1 - 4 + 3}&{ - 1 - 2 + 3}&{1 + 6 + 3}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{10}&0&0\\{\alpha - 5}&{\alpha + 5}&{\alpha - 5}\\0&0&{10}\end{array}} \right]\]
Now compare both sides.
We get,
\[\alpha - 5 = 0\]
\[ \Rightarrow \alpha = 5\]
Hence the correct option is A.
Note: Students often get confused about the matrix multiplication. The product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. We can equate the matrices only if both the matrices have the same number of rows and the same number of columns, only then the corresponding elements of both matrices will be equal.
Formula used:
For a non-singular square matrix \[A\], \[A{A^{ - 1}} = A{A^{ - 1}} = I\]
Complete step by step solution:
The given matrices are
\[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\] \[.....\left( 1 \right)\]
\[\left( {10} \right)B = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\] \[.....\left( 2 \right)\]
Let’s apply the given information \[B\] is the inverse of matrix \[A\].
We get,
\[{A^{ - 1}} = B\]
Substitute the values in the equation \[\left( 2 \right)\].
\[\left( {10} \right){A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\]
Now multiply both sides by the matrix \[A\].
\[\left( {10} \right){A^{ - 1}}A = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]A\]
Use the identity \[A{A^{ - 1}} = A{A^{ - 1}} = I\].
\[\left( {10} \right)I = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]A\]
Now substitute the values in the above equation.
\[\left( {10} \right)\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}4&2&2\\{ - 5}&0&\alpha \\1&{ - 2}&3\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\2&1&{ - 3}\\1&1&1\end{array}} \right]\]
Apply the scalar and matrix multiplication properties of the matrices.
\[\left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{\left( {4 \times 1} \right) + \left( {2 \times 1} \right) + \left( {2 \times 1} \right)}&{\left( {4 \times - 1} \right) + \left( {2 \times 1} \right) + \left( {2 \times 1} \right)}&{\left( {4 \times 1} \right) + \left( {2 \times - 3} \right) + \left( {2 \times 1} \right)}\\{\left( { - 5 \times 1} \right) + \left( {0 \times 2} \right) + \left( {\alpha \times 1} \right)}&{\left( { - 5 \times - 1} \right) + \left( {0 \times 1} \right) + \left( {\alpha \times 1} \right)}&{\left( { - 5 \times 1} \right) + \left( {0 \times - 3} \right) + \left( {\alpha \times 1} \right)}\\{\left( {1 \times 1} \right) + \left( { - 2 \times 2} \right) + \left( {3 \times 1} \right)}&{\left( {1 \times - 1} \right) + \left( { - 2 \times 1} \right) + \left( {3 \times 1} \right)}&{\left( {1 \times 1} \right) + \left( { - 2 \times - 3} \right) + \left( {3 \times 1} \right)}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{4 + 2 + 2}&{ - 4 + 2 + 2}&{4 - 6 + 2}\\{ - 5 + \alpha }&{5 + \alpha }&{ - 5 + \alpha }\\{1 - 4 + 3}&{ - 1 - 2 + 3}&{1 + 6 + 3}\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}{10}&0&0\\0&{10}&0\\0&0&{10}\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{10}&0&0\\{\alpha - 5}&{\alpha + 5}&{\alpha - 5}\\0&0&{10}\end{array}} \right]\]
Now compare both sides.
We get,
\[\alpha - 5 = 0\]
\[ \Rightarrow \alpha = 5\]
Hence the correct option is A.
Note: Students often get confused about the matrix multiplication. The product of two matrices is defined if the number of columns of the first matrix is equal to the number of rows of the second matrix. We can equate the matrices only if both the matrices have the same number of rows and the same number of columns, only then the corresponding elements of both matrices will be equal.
Recently Updated Pages
Haryana B.Tech Counselling 2023: Seat Allotment Procedure

IIT Ropar Cutoff 2025: Expected Ranks for CSE, Mechanical, Electrical, OBC & More

JEE Principles Related to Practical Chemistry important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Main Surface Chemistry – Explanation, Analysis Techniques and Applications

Difference Between Asteroid and Comet

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

