
What is the inverse of \[A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\]?
A. \[\left( {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right)\]
B. \[\dfrac{1}{{\left( {ad - bc} \right)}}\left( {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right)\]
C. \[\dfrac{1}{{\left| A \right|}}\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\]
D. \[\left( {\begin{array}{*{20}{c}}b&{ - a}\\d&{ - c}\end{array}} \right)\]
Answer
216k+ views
Hint: We will find the cofactors of the given matrix. Using the cofactors, we will find the adjoint of the given matrix. Then we will calculate the determinate of the given matrix. Then put the adjoint matrix and determinant in the formula of the inverse matrix.
Formula used:
The adjoint of the matrix \[\left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right]\] is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\]where \[{A_{ij}}\] are the cofactors.
The inverse formula of matrix A is \[A = \dfrac{1}{{\left| A \right|}}Adj\,A\].
Complete Step by step solution:
Given matrix is \[A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\]
The cofactors of the matrix are
\[{A_{11}} =(-1)^{1+1} d = d\]
\[{A_{12}} = (-1)^{1+2}c = -c\]
\[{A_{21}} = (-1)^{2+1} b = -b\]
\[{A_{22}} = (-1)^{2+2}a = a\]
The adjoint of the given matrix is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Now we will calculate the determinate of the given matrix
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = ad - bc\]
Now we will substitute the adjoint matrix and determinate of A in the formula \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}Adj\,A\].
\[{A^{ - 1}} = \dfrac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Hence option B is the correct option.
Additional information:
The inverse of a matrix exists if and only if the matrix is a non-singular matrix. In other words, if the determinate of a matrix is not equal to zero, then the inverse of the matrix exists.
Note: Students do a mistake to calculate the adjoint matrix. We have to transpose the row and column of the cofactor to find the adjoint of the matrix. But students forgot to transpose the rows and columns that is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{12}}}\\{{A_{21}}}&{{A_{22}}}\end{array}} \right]\]. The correct formula is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\].
Formula used:
The adjoint of the matrix \[\left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right]\] is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\]where \[{A_{ij}}\] are the cofactors.
The inverse formula of matrix A is \[A = \dfrac{1}{{\left| A \right|}}Adj\,A\].
Complete Step by step solution:
Given matrix is \[A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\]
The cofactors of the matrix are
\[{A_{11}} =(-1)^{1+1} d = d\]
\[{A_{12}} = (-1)^{1+2}c = -c\]
\[{A_{21}} = (-1)^{2+1} b = -b\]
\[{A_{22}} = (-1)^{2+2}a = a\]
The adjoint of the given matrix is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Now we will calculate the determinate of the given matrix
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = ad - bc\]
Now we will substitute the adjoint matrix and determinate of A in the formula \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}Adj\,A\].
\[{A^{ - 1}} = \dfrac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Hence option B is the correct option.
Additional information:
The inverse of a matrix exists if and only if the matrix is a non-singular matrix. In other words, if the determinate of a matrix is not equal to zero, then the inverse of the matrix exists.
Note: Students do a mistake to calculate the adjoint matrix. We have to transpose the row and column of the cofactor to find the adjoint of the matrix. But students forgot to transpose the rows and columns that is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{12}}}\\{{A_{21}}}&{{A_{22}}}\end{array}} \right]\]. The correct formula is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\].
Recently Updated Pages
JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Analytical Geometry - Free PDF Download

JEE Advanced 2022 Question Paper with Solutions PDF free Download

JEE Advanced 2026 Revision Notes for Differential Calculus - Free PDF Download

JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

