
What is the inverse of \[A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\]?
A. \[\left( {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right)\]
B. \[\dfrac{1}{{\left( {ad - bc} \right)}}\left( {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right)\]
C. \[\dfrac{1}{{\left| A \right|}}\left( {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right)\]
D. \[\left( {\begin{array}{*{20}{c}}b&{ - a}\\d&{ - c}\end{array}} \right)\]
Answer
164.4k+ views
Hint: We will find the cofactors of the given matrix. Using the cofactors, we will find the adjoint of the given matrix. Then we will calculate the determinate of the given matrix. Then put the adjoint matrix and determinant in the formula of the inverse matrix.
Formula used:
The adjoint of the matrix \[\left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right]\] is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\]where \[{A_{ij}}\] are the cofactors.
The inverse formula of matrix A is \[A = \dfrac{1}{{\left| A \right|}}Adj\,A\].
Complete Step by step solution:
Given matrix is \[A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\]
The cofactors of the matrix are
\[{A_{11}} =(-1)^{1+1} d = d\]
\[{A_{12}} = (-1)^{1+2}c = -c\]
\[{A_{21}} = (-1)^{2+1} b = -b\]
\[{A_{22}} = (-1)^{2+2}a = a\]
The adjoint of the given matrix is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Now we will calculate the determinate of the given matrix
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = ad - bc\]
Now we will substitute the adjoint matrix and determinate of A in the formula \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}Adj\,A\].
\[{A^{ - 1}} = \dfrac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Hence option B is the correct option.
Additional information:
The inverse of a matrix exists if and only if the matrix is a non-singular matrix. In other words, if the determinate of a matrix is not equal to zero, then the inverse of the matrix exists.
Note: Students do a mistake to calculate the adjoint matrix. We have to transpose the row and column of the cofactor to find the adjoint of the matrix. But students forgot to transpose the rows and columns that is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{12}}}\\{{A_{21}}}&{{A_{22}}}\end{array}} \right]\]. The correct formula is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\].
Formula used:
The adjoint of the matrix \[\left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}\\{{a_{21}}}&{{a_{22}}}\end{array}} \right]\] is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\]where \[{A_{ij}}\] are the cofactors.
The inverse formula of matrix A is \[A = \dfrac{1}{{\left| A \right|}}Adj\,A\].
Complete Step by step solution:
Given matrix is \[A = \left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\]
The cofactors of the matrix are
\[{A_{11}} =(-1)^{1+1} d = d\]
\[{A_{12}} = (-1)^{1+2}c = -c\]
\[{A_{21}} = (-1)^{2+1} b = -b\]
\[{A_{22}} = (-1)^{2+2}a = a\]
The adjoint of the given matrix is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\]\[ = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Now we will calculate the determinate of the given matrix
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = ad - bc\]
Now we will substitute the adjoint matrix and determinate of A in the formula \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}Adj\,A\].
\[{A^{ - 1}} = \dfrac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Hence option B is the correct option.
Additional information:
The inverse of a matrix exists if and only if the matrix is a non-singular matrix. In other words, if the determinate of a matrix is not equal to zero, then the inverse of the matrix exists.
Note: Students do a mistake to calculate the adjoint matrix. We have to transpose the row and column of the cofactor to find the adjoint of the matrix. But students forgot to transpose the rows and columns that is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{12}}}\\{{A_{21}}}&{{A_{22}}}\end{array}} \right]\]. The correct formula is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}\\{{A_{12}}}&{{A_{22}}}\end{array}} \right]\].
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
