
If \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\] then find \[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}}\].
A. \[\cot z\]
B. \[\dfrac{1}{2}\tan z\]
C. \[\dfrac{1}{2}\cot z\]
D. \[\tan z\]
Answer
217.8k+ views
Hint: First we will find reverse of inverse trigonometry. Then find the partial derivative of the equation with respect to \[x\] and \[y\]. Then calculate the value of \[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}}\].
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\sin x} \right) = \cos x\]
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{\partial u}}{{\partial x}} - u\dfrac{{\partial v}}{{\partial x}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\].
Apply the reverse formula of trigonometry inverse
\[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] …….(i)
Calculate the partial derivative of equation (i) with respect to \[x\]
\[\cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial x}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial x}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2x + 2\sqrt {xy} - x - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x + 2\sqrt {xy} - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] ……..(ii)
Calculate the partial derivative of equation (i) with respect to \[y\]
\[\cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{\partial }{{\partial y}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial y}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial y}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt {xy} + 2y - x - y}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{y + 2\sqrt {xy} - x}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]…..(iii)
Multiply \[x\] with equation (ii) and multiply \[y\] with equation (iii) and add them
\[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x\left( {x + 2\sqrt {xy} - y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}} + \dfrac{1}{{\cos z}} \cdot \dfrac{{y\left( {y + 2\sqrt {xy} - x} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Take common \[\dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] from the right side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\dfrac{{\sqrt x \cdot \sqrt x \left( {x + 2\sqrt {xy} - y} \right)}}{{\sqrt x }} + \dfrac{{\sqrt y \cdot \sqrt y \left( {y + 2\sqrt {xy} - x} \right)}}{{\sqrt y }}} \right]\]
Cancel out same terms from the numerator and denominator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\sqrt x \left( {x + 2\sqrt {xy} - y} \right) + \sqrt y \left( {y + 2\sqrt {xy} - x} \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + 2x\sqrt y - y\sqrt x + y\sqrt y + 2y\sqrt x - x\sqrt y } \right]\]
Subtract like on the numerator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + x\sqrt y + y\sqrt y + y\sqrt x } \right]\]
Apply factor method
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\left( {\sqrt x + \sqrt y } \right) + y\left( {\sqrt y + \sqrt x } \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right)\]
Cancel out \[\left( {\sqrt x + \sqrt y } \right)\] from the denominator and numerator from the right-side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \dfrac{{\left( {x + y} \right)}}{{\left( {\sqrt x + \sqrt y } \right)}}\]
From equation (i) we get \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\]
Substitute \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] in the above equation
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \sin z\]
We know that \[\dfrac{{\sin x}}{{\cos x}} = \tan x\].
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{2}\tan z\]
Hence option B is the correct option.
Note: Partial derivative is all most same as normal derivate. But in the partial derivative we consider only one variable and other variables are treated as constant. When we find the partial derivative \[\dfrac{\partial }{{\partial x}}\], then we consider \[x\] as variable and \[y\] as a constant.
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\sin x} \right) = \cos x\]
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{\partial u}}{{\partial x}} - u\dfrac{{\partial v}}{{\partial x}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\].
Apply the reverse formula of trigonometry inverse
\[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] …….(i)
Calculate the partial derivative of equation (i) with respect to \[x\]
\[\cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial x}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial x}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2x + 2\sqrt {xy} - x - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x + 2\sqrt {xy} - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] ……..(ii)
Calculate the partial derivative of equation (i) with respect to \[y\]
\[\cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{\partial }{{\partial y}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial y}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial y}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt {xy} + 2y - x - y}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{y + 2\sqrt {xy} - x}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]…..(iii)
Multiply \[x\] with equation (ii) and multiply \[y\] with equation (iii) and add them
\[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x\left( {x + 2\sqrt {xy} - y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}} + \dfrac{1}{{\cos z}} \cdot \dfrac{{y\left( {y + 2\sqrt {xy} - x} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Take common \[\dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] from the right side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\dfrac{{\sqrt x \cdot \sqrt x \left( {x + 2\sqrt {xy} - y} \right)}}{{\sqrt x }} + \dfrac{{\sqrt y \cdot \sqrt y \left( {y + 2\sqrt {xy} - x} \right)}}{{\sqrt y }}} \right]\]
Cancel out same terms from the numerator and denominator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\sqrt x \left( {x + 2\sqrt {xy} - y} \right) + \sqrt y \left( {y + 2\sqrt {xy} - x} \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + 2x\sqrt y - y\sqrt x + y\sqrt y + 2y\sqrt x - x\sqrt y } \right]\]
Subtract like on the numerator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + x\sqrt y + y\sqrt y + y\sqrt x } \right]\]
Apply factor method
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\left( {\sqrt x + \sqrt y } \right) + y\left( {\sqrt y + \sqrt x } \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right)\]
Cancel out \[\left( {\sqrt x + \sqrt y } \right)\] from the denominator and numerator from the right-side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \dfrac{{\left( {x + y} \right)}}{{\left( {\sqrt x + \sqrt y } \right)}}\]
From equation (i) we get \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\]
Substitute \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] in the above equation
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \sin z\]
We know that \[\dfrac{{\sin x}}{{\cos x}} = \tan x\].
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{2}\tan z\]
Hence option B is the correct option.
Note: Partial derivative is all most same as normal derivate. But in the partial derivative we consider only one variable and other variables are treated as constant. When we find the partial derivative \[\dfrac{\partial }{{\partial x}}\], then we consider \[x\] as variable and \[y\] as a constant.
Recently Updated Pages
JEE Advanced Physics Syllabus 2026 – PDF Download, Topic-Wise Weightage and Updates.

JEE Advanced Chemistry Syllabus 2026 - Free PDF Download

Sum of Squares - Formulas and FAQs

Difference Between Axiom and Theorem | Learn and Solve Questions

JEE Advanced Maths Syllabus 2026 (Released) – Download Free PDF

SRMJEEE Result 2024 (Out) Check all the Updates Here

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

JEE Advanced Syllabus 2026

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

