
If \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\] then find \[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}}\].
A. \[\cot z\]
B. \[\dfrac{1}{2}\tan z\]
C. \[\dfrac{1}{2}\cot z\]
D. \[\tan z\]
Answer
162k+ views
Hint: First we will find reverse of inverse trigonometry. Then find the partial derivative of the equation with respect to \[x\] and \[y\]. Then calculate the value of \[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}}\].
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\sin x} \right) = \cos x\]
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{\partial u}}{{\partial x}} - u\dfrac{{\partial v}}{{\partial x}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\].
Apply the reverse formula of trigonometry inverse
\[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] …….(i)
Calculate the partial derivative of equation (i) with respect to \[x\]
\[\cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial x}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial x}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2x + 2\sqrt {xy} - x - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x + 2\sqrt {xy} - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] ……..(ii)
Calculate the partial derivative of equation (i) with respect to \[y\]
\[\cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{\partial }{{\partial y}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial y}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial y}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt {xy} + 2y - x - y}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{y + 2\sqrt {xy} - x}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]…..(iii)
Multiply \[x\] with equation (ii) and multiply \[y\] with equation (iii) and add them
\[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x\left( {x + 2\sqrt {xy} - y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}} + \dfrac{1}{{\cos z}} \cdot \dfrac{{y\left( {y + 2\sqrt {xy} - x} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Take common \[\dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] from the right side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\dfrac{{\sqrt x \cdot \sqrt x \left( {x + 2\sqrt {xy} - y} \right)}}{{\sqrt x }} + \dfrac{{\sqrt y \cdot \sqrt y \left( {y + 2\sqrt {xy} - x} \right)}}{{\sqrt y }}} \right]\]
Cancel out same terms from the numerator and denominator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\sqrt x \left( {x + 2\sqrt {xy} - y} \right) + \sqrt y \left( {y + 2\sqrt {xy} - x} \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + 2x\sqrt y - y\sqrt x + y\sqrt y + 2y\sqrt x - x\sqrt y } \right]\]
Subtract like on the numerator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + x\sqrt y + y\sqrt y + y\sqrt x } \right]\]
Apply factor method
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\left( {\sqrt x + \sqrt y } \right) + y\left( {\sqrt y + \sqrt x } \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right)\]
Cancel out \[\left( {\sqrt x + \sqrt y } \right)\] from the denominator and numerator from the right-side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \dfrac{{\left( {x + y} \right)}}{{\left( {\sqrt x + \sqrt y } \right)}}\]
From equation (i) we get \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\]
Substitute \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] in the above equation
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \sin z\]
We know that \[\dfrac{{\sin x}}{{\cos x}} = \tan x\].
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{2}\tan z\]
Hence option B is the correct option.
Note: Partial derivative is all most same as normal derivate. But in the partial derivative we consider only one variable and other variables are treated as constant. When we find the partial derivative \[\dfrac{\partial }{{\partial x}}\], then we consider \[x\] as variable and \[y\] as a constant.
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\sin x} \right) = \cos x\]
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{\partial u}}{{\partial x}} - u\dfrac{{\partial v}}{{\partial x}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\].
Apply the reverse formula of trigonometry inverse
\[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] …….(i)
Calculate the partial derivative of equation (i) with respect to \[x\]
\[\cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial x}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial x}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2x + 2\sqrt {xy} - x - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x + 2\sqrt {xy} - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] ……..(ii)
Calculate the partial derivative of equation (i) with respect to \[y\]
\[\cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{\partial }{{\partial y}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial y}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial y}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt {xy} + 2y - x - y}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{y + 2\sqrt {xy} - x}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]…..(iii)
Multiply \[x\] with equation (ii) and multiply \[y\] with equation (iii) and add them
\[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x\left( {x + 2\sqrt {xy} - y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}} + \dfrac{1}{{\cos z}} \cdot \dfrac{{y\left( {y + 2\sqrt {xy} - x} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Take common \[\dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] from the right side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\dfrac{{\sqrt x \cdot \sqrt x \left( {x + 2\sqrt {xy} - y} \right)}}{{\sqrt x }} + \dfrac{{\sqrt y \cdot \sqrt y \left( {y + 2\sqrt {xy} - x} \right)}}{{\sqrt y }}} \right]\]
Cancel out same terms from the numerator and denominator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\sqrt x \left( {x + 2\sqrt {xy} - y} \right) + \sqrt y \left( {y + 2\sqrt {xy} - x} \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + 2x\sqrt y - y\sqrt x + y\sqrt y + 2y\sqrt x - x\sqrt y } \right]\]
Subtract like on the numerator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + x\sqrt y + y\sqrt y + y\sqrt x } \right]\]
Apply factor method
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\left( {\sqrt x + \sqrt y } \right) + y\left( {\sqrt y + \sqrt x } \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right)\]
Cancel out \[\left( {\sqrt x + \sqrt y } \right)\] from the denominator and numerator from the right-side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \dfrac{{\left( {x + y} \right)}}{{\left( {\sqrt x + \sqrt y } \right)}}\]
From equation (i) we get \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\]
Substitute \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] in the above equation
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \sin z\]
We know that \[\dfrac{{\sin x}}{{\cos x}} = \tan x\].
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{2}\tan z\]
Hence option B is the correct option.
Note: Partial derivative is all most same as normal derivate. But in the partial derivative we consider only one variable and other variables are treated as constant. When we find the partial derivative \[\dfrac{\partial }{{\partial x}}\], then we consider \[x\] as variable and \[y\] as a constant.
Recently Updated Pages
JEE Advanced Course 2025 - Subject List, Syllabus, Course, Details

Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Students Also Read