
If \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\] then find \[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}}\].
A. \[\cot z\]
B. \[\dfrac{1}{2}\tan z\]
C. \[\dfrac{1}{2}\cot z\]
D. \[\tan z\]
Answer
231.6k+ views
Hint: First we will find reverse of inverse trigonometry. Then find the partial derivative of the equation with respect to \[x\] and \[y\]. Then calculate the value of \[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}}\].
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\sin x} \right) = \cos x\]
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{\partial u}}{{\partial x}} - u\dfrac{{\partial v}}{{\partial x}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\].
Apply the reverse formula of trigonometry inverse
\[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] …….(i)
Calculate the partial derivative of equation (i) with respect to \[x\]
\[\cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial x}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial x}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2x + 2\sqrt {xy} - x - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x + 2\sqrt {xy} - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] ……..(ii)
Calculate the partial derivative of equation (i) with respect to \[y\]
\[\cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{\partial }{{\partial y}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial y}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial y}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt {xy} + 2y - x - y}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{y + 2\sqrt {xy} - x}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]…..(iii)
Multiply \[x\] with equation (ii) and multiply \[y\] with equation (iii) and add them
\[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x\left( {x + 2\sqrt {xy} - y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}} + \dfrac{1}{{\cos z}} \cdot \dfrac{{y\left( {y + 2\sqrt {xy} - x} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Take common \[\dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] from the right side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\dfrac{{\sqrt x \cdot \sqrt x \left( {x + 2\sqrt {xy} - y} \right)}}{{\sqrt x }} + \dfrac{{\sqrt y \cdot \sqrt y \left( {y + 2\sqrt {xy} - x} \right)}}{{\sqrt y }}} \right]\]
Cancel out same terms from the numerator and denominator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\sqrt x \left( {x + 2\sqrt {xy} - y} \right) + \sqrt y \left( {y + 2\sqrt {xy} - x} \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + 2x\sqrt y - y\sqrt x + y\sqrt y + 2y\sqrt x - x\sqrt y } \right]\]
Subtract like on the numerator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + x\sqrt y + y\sqrt y + y\sqrt x } \right]\]
Apply factor method
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\left( {\sqrt x + \sqrt y } \right) + y\left( {\sqrt y + \sqrt x } \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right)\]
Cancel out \[\left( {\sqrt x + \sqrt y } \right)\] from the denominator and numerator from the right-side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \dfrac{{\left( {x + y} \right)}}{{\left( {\sqrt x + \sqrt y } \right)}}\]
From equation (i) we get \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\]
Substitute \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] in the above equation
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \sin z\]
We know that \[\dfrac{{\sin x}}{{\cos x}} = \tan x\].
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{2}\tan z\]
Hence option B is the correct option.
Note: Partial derivative is all most same as normal derivate. But in the partial derivative we consider only one variable and other variables are treated as constant. When we find the partial derivative \[\dfrac{\partial }{{\partial x}}\], then we consider \[x\] as variable and \[y\] as a constant.
Formula used:
\[\dfrac{\partial }{{\partial x}}\left( {\sin x} \right) = \cos x\]
\[\dfrac{\partial }{{\partial x}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{\partial u}}{{\partial x}} - u\dfrac{{\partial v}}{{\partial x}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is \[z = {\sin ^{ - 1}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\].
Apply the reverse formula of trigonometry inverse
\[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] …….(i)
Calculate the partial derivative of equation (i) with respect to \[x\]
\[\cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial x}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial x}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt x \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2x + 2\sqrt {xy} - x - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial x}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x + 2\sqrt {xy} - y}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] ……..(ii)
Calculate the partial derivative of equation (i) with respect to \[y\]
\[\cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{\partial }{{\partial y}}\left( {\dfrac{{x + y}}{{\sqrt x + \sqrt y }}} \right)\]
Apply the quotient formula on the right side:
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial y}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\dfrac{\partial }{{\partial y}}\left( {x + y} \right) - \left( {x + y} \right)\dfrac{\partial }{{\partial y}}\left( {\sqrt x + \sqrt y } \right)}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \cos z\dfrac{{\partial z}}{{\partial x}} = \dfrac{{\left( {\sqrt x + \sqrt y } \right) \cdot 1 - \left( {x + y} \right) \cdot \dfrac{1}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Divide both sides by \[\cos z\].
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{\dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y }}}}{{{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt y \left( {\sqrt x + \sqrt y } \right) - \left( {x + y} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{2\sqrt {xy} + 2y - x - y}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
\[ \Rightarrow \dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{y + 2\sqrt {xy} - x}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]…..(iii)
Multiply \[x\] with equation (ii) and multiply \[y\] with equation (iii) and add them
\[x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{\cos z}} \cdot \dfrac{{x\left( {x + 2\sqrt {xy} - y} \right)}}{{2\sqrt x {{\left( {\sqrt x + \sqrt y } \right)}^2}}} + \dfrac{1}{{\cos z}} \cdot \dfrac{{y\left( {y + 2\sqrt {xy} - x} \right)}}{{2\sqrt y {{\left( {\sqrt x + \sqrt y } \right)}^2}}}\]
Take common \[\dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\] from the right side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\dfrac{{\sqrt x \cdot \sqrt x \left( {x + 2\sqrt {xy} - y} \right)}}{{\sqrt x }} + \dfrac{{\sqrt y \cdot \sqrt y \left( {y + 2\sqrt {xy} - x} \right)}}{{\sqrt y }}} \right]\]
Cancel out same terms from the numerator and denominator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {\sqrt x \left( {x + 2\sqrt {xy} - y} \right) + \sqrt y \left( {y + 2\sqrt {xy} - x} \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + 2x\sqrt y - y\sqrt x + y\sqrt y + 2y\sqrt x - x\sqrt y } \right]\]
Subtract like on the numerator
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\sqrt x + x\sqrt y + y\sqrt y + y\sqrt x } \right]\]
Apply factor method
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left[ {x\left( {\sqrt x + \sqrt y } \right) + y\left( {\sqrt y + \sqrt x } \right)} \right]\]
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z{{\left( {\sqrt x + \sqrt y } \right)}^2}}}\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right)\]
Cancel out \[\left( {\sqrt x + \sqrt y } \right)\] from the denominator and numerator from the right-side expression
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \dfrac{{\left( {x + y} \right)}}{{\left( {\sqrt x + \sqrt y } \right)}}\]
From equation (i) we get \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\]
Substitute \[\sin z = \dfrac{{x + y}}{{\sqrt x + \sqrt y }}\] in the above equation
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{{2\cos z}} \cdot \sin z\]
We know that \[\dfrac{{\sin x}}{{\cos x}} = \tan x\].
\[ \Rightarrow x\dfrac{{\partial z}}{{\partial x}} + y\dfrac{{\partial z}}{{\partial y}} = \dfrac{1}{2}\tan z\]
Hence option B is the correct option.
Note: Partial derivative is all most same as normal derivate. But in the partial derivative we consider only one variable and other variables are treated as constant. When we find the partial derivative \[\dfrac{\partial }{{\partial x}}\], then we consider \[x\] as variable and \[y\] as a constant.
Recently Updated Pages
If Fleft u right fleft xyz right be a homogeneous function class 13 maths JEE_Advanced

If u tan 1left dfracx3 + y3x y right then find x2dfracpartial class 13 maths JEE_Advanced

If uleft xy right ex2 + y2 then find the value of class 13 maths JEE_Advanced

If u xy2tan 1left dfracyx right then what is the value class 13 maths JEE_Advanced

If z sin 1left dfracx + ysqrt x + sqrt y right then class 13 maths JEE_Advanced

If u log dfracx2 + y2xy then find the value of xdfracpartial class 13 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

