
If \[u = \tan^{ - 1}\left( {x + y} \right)\], then what is the value of \[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}}\]?
A. \[\sin 2u\]
B. \[\left( {\dfrac{1}{2}} \right)\sin 2u\]
C. \[2\tan u\]
D. \[\sec^{2}u\]
Answer
233.1k+ views
Hint: First, differentiate the given equation partially with respect to \[x\]. Again, differentiate the given equation partially with respect to \[y\]. Substitute both differential equations in the given expression \[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}}\] to get the required answer.
Formula used:
\[\dfrac{\partial }{{\partial x}}\tan^{ - 1}\left( {x + y} \right) = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {x + y} \right) = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\]
\[\dfrac{\partial }{{\partial y}}\tan^{ - 1}\left( {x + y} \right) = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\dfrac{\partial }{{\partial y}}\left( {x + y} \right) = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\]
\[\tan^{2}x + 1 = \sec^{2}x\]
\[\sin 2x = 2\sin x \cos x\]
Complete step by step solution:
The given inverse trigonometric equation is \[u = \tan^{ - 1}\left( {x + y} \right)\].
Let’s differentiate the above given equation partially with respect to the variable \[x\].
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\tan^{ - 1}\left( {x + y} \right)\]
Apply the chain rule of differentiation.
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {x + y} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\] \[.....\left( 1 \right)\]
Also, differentiate the above given equation partially with respect to the variable \[y\].
\[\dfrac{{\partial u}}{{\partial y}} = \dfrac{\partial }{{\partial y}}\tan^{ - 1}\left( {x + y} \right)\]
Apply the chain rule of differentiation.
\[\dfrac{{\partial u}}{{\partial y}} = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\dfrac{\partial }{{\partial y}}\left( {x + y} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial y}} = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the given expression \[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}}\].
We get,
\[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = x\left( {\dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}} \right) + y\left( {\dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}} \right)\]
Simplify the above equation.
\[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \dfrac{{x + y}}{{1 + {{\left( {x + y} \right)}^2}}}\]
Resubstitute the value of \[\left( {x + y} \right)\] by using the given equation \[u = \tan^{ - 1}\left( {x + y} \right)\].
\[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \dfrac{{\tan u}}{{1 + {{\left( {\tan u} \right)}^2}}}\]
\[ \Rightarrow x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \dfrac{{\tan u}}{{1 + \tan^{2}u}}\]
Apply the trigonometric identity \[\tan^{2}x + 1 = \sec^{2}x\].
\[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \dfrac{{\tan u}}{{\sec^{2}u}}\]
Use the trigonometric ratio \[\cos x = \dfrac{1}{{\sec x}}\] and \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
\[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \left( {\dfrac{{\sin u}}{{\cos u}} } \right)\cos^{2}u\]
\[ \Rightarrow x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \sin u \cos u\]
Now apply the trigonometric identity \[\sin 2x = 2\sin x \cos x\].
\[ \Rightarrow x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \left( {\dfrac{1}{2}} \right)\sin 2u\]
Hence the correct option is B.
Note: Partial derivative is all most same as normal derivate. But in the partial derivative, we consider only one variable and other variables are treated as constant. When we find the partial derivative $\dfrac{\partial }{{\partial x}}$, then we consider \[x\] as a variable and \[y\] as a constant.
Formula used:
\[\dfrac{\partial }{{\partial x}}\tan^{ - 1}\left( {x + y} \right) = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {x + y} \right) = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\]
\[\dfrac{\partial }{{\partial y}}\tan^{ - 1}\left( {x + y} \right) = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\dfrac{\partial }{{\partial y}}\left( {x + y} \right) = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\]
\[\tan^{2}x + 1 = \sec^{2}x\]
\[\sin 2x = 2\sin x \cos x\]
Complete step by step solution:
The given inverse trigonometric equation is \[u = \tan^{ - 1}\left( {x + y} \right)\].
Let’s differentiate the above given equation partially with respect to the variable \[x\].
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{\partial }{{\partial x}}\tan^{ - 1}\left( {x + y} \right)\]
Apply the chain rule of differentiation.
\[\dfrac{{\partial u}}{{\partial x}} = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\dfrac{\partial }{{\partial x}}\left( {x + y} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial x}} = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\] \[.....\left( 1 \right)\]
Also, differentiate the above given equation partially with respect to the variable \[y\].
\[\dfrac{{\partial u}}{{\partial y}} = \dfrac{\partial }{{\partial y}}\tan^{ - 1}\left( {x + y} \right)\]
Apply the chain rule of differentiation.
\[\dfrac{{\partial u}}{{\partial y}} = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\dfrac{\partial }{{\partial y}}\left( {x + y} \right)\]
\[ \Rightarrow \dfrac{{\partial u}}{{\partial y}} = \dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}\] \[.....\left( 2 \right)\]
Now substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the given expression \[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}}\].
We get,
\[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = x\left( {\dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}} \right) + y\left( {\dfrac{1}{{1 + {{\left( {x + y} \right)}^2}}}} \right)\]
Simplify the above equation.
\[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \dfrac{{x + y}}{{1 + {{\left( {x + y} \right)}^2}}}\]
Resubstitute the value of \[\left( {x + y} \right)\] by using the given equation \[u = \tan^{ - 1}\left( {x + y} \right)\].
\[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \dfrac{{\tan u}}{{1 + {{\left( {\tan u} \right)}^2}}}\]
\[ \Rightarrow x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \dfrac{{\tan u}}{{1 + \tan^{2}u}}\]
Apply the trigonometric identity \[\tan^{2}x + 1 = \sec^{2}x\].
\[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \dfrac{{\tan u}}{{\sec^{2}u}}\]
Use the trigonometric ratio \[\cos x = \dfrac{1}{{\sec x}}\] and \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
\[x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \left( {\dfrac{{\sin u}}{{\cos u}} } \right)\cos^{2}u\]
\[ \Rightarrow x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \sin u \cos u\]
Now apply the trigonometric identity \[\sin 2x = 2\sin x \cos x\].
\[ \Rightarrow x\dfrac{{\partial u}}{{\partial x}} + y\dfrac{{\partial u}}{{\partial y}} = \left( {\dfrac{1}{2}} \right)\sin 2u\]
Hence the correct option is B.
Note: Partial derivative is all most same as normal derivate. But in the partial derivative, we consider only one variable and other variables are treated as constant. When we find the partial derivative $\dfrac{\partial }{{\partial x}}$, then we consider \[x\] as a variable and \[y\] as a constant.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

