
If \[A = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\], then find the value of \[A\left( {adj A} \right)\].
A. \[I\]
B. \[\left| A \right|\]
C. \[\left| A \right|I\]
D. None of these
Answer
163.5k+ views
Hint: First, calculate the adjoint matrix of the given \[2 \times 2\] matrix \[A\]. Then substitute the value of \[adj A\] and \[A\] in the given expression and simplify it by using the matrix multiplication method to get the required answer.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\].
Let’s calculate the adjoint matrix of the matrix \[A\].
Apply the formula of the adjoint matrix of \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Now substitute the values of \[adj A\] and \[A\] in the given expression.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Apply the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{3 \times 7 + 4 \times \left( { - 5} \right)}&{3 \times \left( { - 4} \right) + 4 \times 3}\\{5 \times 7 + 7 \times \left( { - 5} \right)}&{5 \times \left( { - 4} \right) + 7 \times 3}\end{array}} \right]\]
Solve the right-hand side of the above equation.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{21 - 20}&{ - 12 + 12}\\{35 - 35}&{ - 20 + 21}\end{array}} \right]\]
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[A\left( {adj A} \right) = I\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given matrix \[A\].
\[\left| A \right| = 3 \times 7 - 4 \times 5\]
\[ \Rightarrow \left| A \right| = 21 - 20\]
\[ \Rightarrow \left| A \right| = 1\] \[.....\left( 2 \right)\]
We can write the equation \[\left( 1 \right)\] as follows:
\[A\left( {adj A} \right) = 1 \times I\]
From the equation \[\left( 2 \right)\], we get
\[A\left( {adj A} \right) = \left| A \right|I\]
Hence the correct options are A and C.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\].
Let’s calculate the adjoint matrix of the matrix \[A\].
Apply the formula of the adjoint matrix of \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Now substitute the values of \[adj A\] and \[A\] in the given expression.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Apply the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{3 \times 7 + 4 \times \left( { - 5} \right)}&{3 \times \left( { - 4} \right) + 4 \times 3}\\{5 \times 7 + 7 \times \left( { - 5} \right)}&{5 \times \left( { - 4} \right) + 7 \times 3}\end{array}} \right]\]
Solve the right-hand side of the above equation.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{21 - 20}&{ - 12 + 12}\\{35 - 35}&{ - 20 + 21}\end{array}} \right]\]
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[A\left( {adj A} \right) = I\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given matrix \[A\].
\[\left| A \right| = 3 \times 7 - 4 \times 5\]
\[ \Rightarrow \left| A \right| = 21 - 20\]
\[ \Rightarrow \left| A \right| = 1\] \[.....\left( 2 \right)\]
We can write the equation \[\left( 1 \right)\] as follows:
\[A\left( {adj A} \right) = 1 \times I\]
From the equation \[\left( 2 \right)\], we get
\[A\left( {adj A} \right) = \left| A \right|I\]
Hence the correct options are A and C.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix.
Recently Updated Pages
JEE Advanced Percentile vs Marks 2025| Previous year's trends

JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

Trending doubts
IIT Kanpur Highest Package, Average & Median Salary

IMU CET SYLLABUS 2025

Difference Between Line Voltage and Phase Voltage

IIT Indore Average Package: Placement Overview

JEE Advanced Syllabus 2025 (OUT)

IIT Hyderabad Highest Package 2025: Detailed Placement Insights

Other Pages
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis
