
If \[A = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\], then find the value of \[A\left( {adj A} \right)\].
A. \[I\]
B. \[\left| A \right|\]
C. \[\left| A \right|I\]
D. None of these
Answer
196.2k+ views
Hint: First, calculate the adjoint matrix of the given \[2 \times 2\] matrix \[A\]. Then substitute the value of \[adj A\] and \[A\] in the given expression and simplify it by using the matrix multiplication method to get the required answer.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\].
Let’s calculate the adjoint matrix of the matrix \[A\].
Apply the formula of the adjoint matrix of \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Now substitute the values of \[adj A\] and \[A\] in the given expression.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Apply the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{3 \times 7 + 4 \times \left( { - 5} \right)}&{3 \times \left( { - 4} \right) + 4 \times 3}\\{5 \times 7 + 7 \times \left( { - 5} \right)}&{5 \times \left( { - 4} \right) + 7 \times 3}\end{array}} \right]\]
Solve the right-hand side of the above equation.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{21 - 20}&{ - 12 + 12}\\{35 - 35}&{ - 20 + 21}\end{array}} \right]\]
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[A\left( {adj A} \right) = I\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given matrix \[A\].
\[\left| A \right| = 3 \times 7 - 4 \times 5\]
\[ \Rightarrow \left| A \right| = 21 - 20\]
\[ \Rightarrow \left| A \right| = 1\] \[.....\left( 2 \right)\]
We can write the equation \[\left( 1 \right)\] as follows:
\[A\left( {adj A} \right) = 1 \times I\]
From the equation \[\left( 2 \right)\], we get
\[A\left( {adj A} \right) = \left| A \right|I\]
Hence the correct options are A and C.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\].
Let’s calculate the adjoint matrix of the matrix \[A\].
Apply the formula of the adjoint matrix of \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Now substitute the values of \[adj A\] and \[A\] in the given expression.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Apply the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{3 \times 7 + 4 \times \left( { - 5} \right)}&{3 \times \left( { - 4} \right) + 4 \times 3}\\{5 \times 7 + 7 \times \left( { - 5} \right)}&{5 \times \left( { - 4} \right) + 7 \times 3}\end{array}} \right]\]
Solve the right-hand side of the above equation.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{21 - 20}&{ - 12 + 12}\\{35 - 35}&{ - 20 + 21}\end{array}} \right]\]
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[A\left( {adj A} \right) = I\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given matrix \[A\].
\[\left| A \right| = 3 \times 7 - 4 \times 5\]
\[ \Rightarrow \left| A \right| = 21 - 20\]
\[ \Rightarrow \left| A \right| = 1\] \[.....\left( 2 \right)\]
We can write the equation \[\left( 1 \right)\] as follows:
\[A\left( {adj A} \right) = 1 \times I\]
From the equation \[\left( 2 \right)\], we get
\[A\left( {adj A} \right) = \left| A \right|I\]
Hence the correct options are A and C.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix.
Recently Updated Pages
JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Analytical Geometry - Free PDF Download

JEE Advanced 2022 Question Paper with Solutions PDF free Download

JEE Advanced 2026 Revision Notes for Differential Calculus - Free PDF Download

JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Collision: Meaning, Types & Examples in Physics
