
If \[A = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\], then find the value of \[A\left( {adj A} \right)\].
A. \[I\]
B. \[\left| A \right|\]
C. \[\left| A \right|I\]
D. None of these
Answer
164.1k+ views
Hint: First, calculate the adjoint matrix of the given \[2 \times 2\] matrix \[A\]. Then substitute the value of \[adj A\] and \[A\] in the given expression and simplify it by using the matrix multiplication method to get the required answer.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\].
Let’s calculate the adjoint matrix of the matrix \[A\].
Apply the formula of the adjoint matrix of \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Now substitute the values of \[adj A\] and \[A\] in the given expression.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Apply the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{3 \times 7 + 4 \times \left( { - 5} \right)}&{3 \times \left( { - 4} \right) + 4 \times 3}\\{5 \times 7 + 7 \times \left( { - 5} \right)}&{5 \times \left( { - 4} \right) + 7 \times 3}\end{array}} \right]\]
Solve the right-hand side of the above equation.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{21 - 20}&{ - 12 + 12}\\{35 - 35}&{ - 20 + 21}\end{array}} \right]\]
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[A\left( {adj A} \right) = I\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given matrix \[A\].
\[\left| A \right| = 3 \times 7 - 4 \times 5\]
\[ \Rightarrow \left| A \right| = 21 - 20\]
\[ \Rightarrow \left| A \right| = 1\] \[.....\left( 2 \right)\]
We can write the equation \[\left( 1 \right)\] as follows:
\[A\left( {adj A} \right) = 1 \times I\]
From the equation \[\left( 2 \right)\], we get
\[A\left( {adj A} \right) = \left| A \right|I\]
Hence the correct options are A and C.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix.
Formula used:
The adjoint matrix of a \[2 \times 2\] matrix \[A = \left[ {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right]\] is: \[adj A = \left[ {\begin{array}{*{20}{c}}d&{ - b}\\{ - c}&a\end{array}} \right]\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\].
Let’s calculate the adjoint matrix of the matrix \[A\].
Apply the formula of the adjoint matrix of \[2 \times 2\] matrix.
We get,
\[adj A = \left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Now substitute the values of \[adj A\] and \[A\] in the given expression.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}3&4\\5&7\end{array}} \right]\left[ {\begin{array}{*{20}{c}}7&{ - 4}\\{ - 5}&3\end{array}} \right]\]
Apply the matrix multiplication method.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{3 \times 7 + 4 \times \left( { - 5} \right)}&{3 \times \left( { - 4} \right) + 4 \times 3}\\{5 \times 7 + 7 \times \left( { - 5} \right)}&{5 \times \left( { - 4} \right) + 7 \times 3}\end{array}} \right]\]
Solve the right-hand side of the above equation.
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}{21 - 20}&{ - 12 + 12}\\{35 - 35}&{ - 20 + 21}\end{array}} \right]\]
\[A\left( {adj A} \right) = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\]
\[A\left( {adj A} \right) = I\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given matrix \[A\].
\[\left| A \right| = 3 \times 7 - 4 \times 5\]
\[ \Rightarrow \left| A \right| = 21 - 20\]
\[ \Rightarrow \left| A \right| = 1\] \[.....\left( 2 \right)\]
We can write the equation \[\left( 1 \right)\] as follows:
\[A\left( {adj A} \right) = 1 \times I\]
From the equation \[\left( 2 \right)\], we get
\[A\left( {adj A} \right) = \left| A \right|I\]
Hence the correct options are A and C.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix.
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
