
If \[A = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&1\\0&{ - 2}&4\end{array}} \right]\] , \[I = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\] and \[{A^{ - 1}} = \dfrac{1}{6}\left[ {{A^2} + cA + dI} \right]\] where \[c,d \in R\]. Then find the value of the pair \[\left( {c,d} \right)\].
A. \[\left( {6, 11} \right)\]
B. \[\left( {6, - 11} \right)\]
C. \[\left( { - 6, 11} \right)\]
D. \[\left( { - 6, - 11} \right)\]
Answer
233.1k+ views
Hint: First, calculate the determinant of the given matrix \[A\]. Check whether the determinant is non-zero or not. Then by using the cofactor matrix find the adjoint matrix of the matrix \[A\]. Substitute the values in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]. Then use the matrix multiplication method and calculate the value of \[{A^2}\]. After that, use the scalar multiplication method and find the values of \[cA\], and \[dI\]. In the end, substitute the values in the given equation \[{A^{ - 1}} = \dfrac{1}{6}\left[ {{A^2} + cA + dI} \right]\] and solve it to get the required answer.
Formula used:
The inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&1\\0&{ - 2}&4\end{array}} \right]\] and \[I = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\].
The equation for the inverse matrix is \[{A^{ - 1}} = \dfrac{1}{6}\left[ {{A^2} + cA + dI} \right]\].
Let’s calculate the determinant of the given \[3 \times 3\] matrix \[A\].
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 1\left( {1 \times 4 - 1 \times \left( { - 2} \right)} \right) - 0\left( {0 \times 4 - 0 \times 1} \right) + 0\left( {0 \times \left( { - 2} \right) - 0 \times 1} \right)\]
\[ \Rightarrow \left| A \right| = 1\left( {4 + 2} \right)\]
\[ \Rightarrow \left| A \right| = 6\]
Now find out the adjoint matrix of the given matrix \[A\].
Let’s calculate the co-factors of the matrix \[A\].
\[{A_{11}} = {\left( { - 1} \right)^{1 + 1}}\left( {1 \times 4 - 1 \times \left( { - 2} \right)} \right) = 6\]
\[{A_{12}} = {\left( { - 1} \right)^{1 + 2}}\left( {0 \times 4 - 0 \times 1} \right) = 0\]
\[{A_{13}} = {\left( { - 1} \right)^{1 + 3}}\left( {0 \times \left( { - 2} \right) - 0 \times 1} \right) = 0\]
\[{A_{21}} = {\left( { - 1} \right)^{2 + 1}}\left( {0 \times 4 - 0 \times \left( { - 2} \right)} \right) = 0\]
\[{A_{22}} = {\left( { - 1} \right)^{2 + 2}}\left( {1 \times 4 - 0 \times 0} \right) = 4\]
\[{A_{23}} = {\left( { - 1} \right)^{2 + 3}}\left( {1 \times \left( { - 2} \right) - 0 \times 0} \right) = 2\]
\[{A_{31}} = {\left( { - 1} \right)^{3 + 1}}\left( {0 \times 1 - 0 \times 1} \right) = 0\]
\[{A_{32}} = {\left( { - 1} \right)^{3 + 2}}\left( {1 \times 1 - 0 \times 0} \right) = - 1\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left( {1 \times 1 - 0 \times 0} \right) = 1\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}6&0&0\\0&4&2\\0&{ - 1}&1\end{array}} \right]\]
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}6&0&0\\0&4&{ - 1}\\0&2&1\end{array}} \right]\]
Now substitute the values of determinant and adjoint matrix in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
We get,
\[{A^{ - 1}} = \dfrac{1}{6}\left[ {\begin{array}{*{20}{c}}6&0&0\\0&4&{ - 1}\\0&2&1\end{array}} \right]\] \[.....\left( 1 \right)\]
Apply the matrix multiplication method to calculate the value of \[{A^2}\].
\[{A^2} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&1\\0&{ - 2}&4\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&1\\0&{ - 2}&4\end{array}} \right]\]
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{1 \times 1 + 0 \times 0 + 0 \times 0}&{1 \times 0 + 0 \times 1 + 0 \times - 2}&{1 \times 0 + 0 \times 1 + 0 \times 4}\\{0 \times 1 + 1 \times 0 + 1 \times 0}&{0 \times 0 + 1 \times 1 + 1 \times - 2}&{0 \times 0 + 1 \times 1 + 1 \times 4}\\{0 \times 1 + \left( { - 2} \right) \times 0 + 4 \times 0}&{0 \times 0 + \left( { - 2} \right) \times 1 + 4 \times - 2}&{0 \times 0 + \left( { - 2} \right) \times 1 + 4 \times 4}\end{array}} \right]\]
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&{ - 1}&5\\0&{ - 10}&{14}\end{array}} \right]\] \[.....\left( 2 \right)\]
Apply the scalar multiplication method to calculate the values of \[cA\], and \[dI\].
We get,
\[cA = c\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&1\\0&{ - 2}&4\end{array}} \right]\]
\[ \Rightarrow cA = \left[ {\begin{array}{*{20}{c}}c&0&0\\0&c&c\\0&{ - 2c}&{4c}\end{array}} \right]\] \[.....\left( 3 \right)\]
And \[dI = d\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}d&0&0\\0&d&0\\0&0&d\end{array}} \right]\] \[.....\left( 4 \right)\]
Now substitute the equations \[\left( 1 \right)\]\[\left( 2 \right)\]\[\left( 3 \right)\], and \[\left( 4 \right)\] in the given equation \[{A^{ - 1}} = \dfrac{1}{6}\left[ {{A^2} + cA + dI} \right]\].
\[\dfrac{1}{6}\left[ {\begin{array}{*{20}{c}}6&0&0\\0&4&{ - 1}\\0&2&1\end{array}} \right] = \dfrac{1}{6}\left[ {\left[ {\begin{array}{*{20}{c}}1&0&0\\0&{ - 1}&5\\0&{ - 10}&{14}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}c&0&0\\0&c&c\\0&{ - 2c}&{4c}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}d&0&0\\0&d&0\\0&0&d\end{array}} \right]} \right]\]
\[ \Rightarrow \dfrac{1}{6}\left[ {\begin{array}{*{20}{c}}6&0&0\\0&4&{ - 1}\\0&2&1\end{array}} \right] = \dfrac{1}{6}\left[ {\begin{array}{*{20}{c}}{1 + c + d}&0&0\\0&{ - 1 + c + d}&{5 + c}\\0&{ - 10 - 2c}&{14 + 4c + d}\end{array}} \right]\]
Equate both sides
\[5 + c = - 1\] and \[1 + c + d = 6\]
Solving these equations, we get
\[c = - 6\] and \[d = 11\]
Hence the correct option is C.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the adjoint matrix of any matrix is the transpose of its cofactor matrix. We can equate two matrices only if they have the same order.
Formula used:
The inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&1\\0&{ - 2}&4\end{array}} \right]\] and \[I = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]\].
The equation for the inverse matrix is \[{A^{ - 1}} = \dfrac{1}{6}\left[ {{A^2} + cA + dI} \right]\].
Let’s calculate the determinant of the given \[3 \times 3\] matrix \[A\].
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 1\left( {1 \times 4 - 1 \times \left( { - 2} \right)} \right) - 0\left( {0 \times 4 - 0 \times 1} \right) + 0\left( {0 \times \left( { - 2} \right) - 0 \times 1} \right)\]
\[ \Rightarrow \left| A \right| = 1\left( {4 + 2} \right)\]
\[ \Rightarrow \left| A \right| = 6\]
Now find out the adjoint matrix of the given matrix \[A\].
Let’s calculate the co-factors of the matrix \[A\].
\[{A_{11}} = {\left( { - 1} \right)^{1 + 1}}\left( {1 \times 4 - 1 \times \left( { - 2} \right)} \right) = 6\]
\[{A_{12}} = {\left( { - 1} \right)^{1 + 2}}\left( {0 \times 4 - 0 \times 1} \right) = 0\]
\[{A_{13}} = {\left( { - 1} \right)^{1 + 3}}\left( {0 \times \left( { - 2} \right) - 0 \times 1} \right) = 0\]
\[{A_{21}} = {\left( { - 1} \right)^{2 + 1}}\left( {0 \times 4 - 0 \times \left( { - 2} \right)} \right) = 0\]
\[{A_{22}} = {\left( { - 1} \right)^{2 + 2}}\left( {1 \times 4 - 0 \times 0} \right) = 4\]
\[{A_{23}} = {\left( { - 1} \right)^{2 + 3}}\left( {1 \times \left( { - 2} \right) - 0 \times 0} \right) = 2\]
\[{A_{31}} = {\left( { - 1} \right)^{3 + 1}}\left( {0 \times 1 - 0 \times 1} \right) = 0\]
\[{A_{32}} = {\left( { - 1} \right)^{3 + 2}}\left( {1 \times 1 - 0 \times 0} \right) = - 1\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left( {1 \times 1 - 0 \times 0} \right) = 1\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}6&0&0\\0&4&2\\0&{ - 1}&1\end{array}} \right]\]
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}6&0&0\\0&4&{ - 1}\\0&2&1\end{array}} \right]\]
Now substitute the values of determinant and adjoint matrix in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
We get,
\[{A^{ - 1}} = \dfrac{1}{6}\left[ {\begin{array}{*{20}{c}}6&0&0\\0&4&{ - 1}\\0&2&1\end{array}} \right]\] \[.....\left( 1 \right)\]
Apply the matrix multiplication method to calculate the value of \[{A^2}\].
\[{A^2} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&1\\0&{ - 2}&4\end{array}} \right]\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&1\\0&{ - 2}&4\end{array}} \right]\]
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}{1 \times 1 + 0 \times 0 + 0 \times 0}&{1 \times 0 + 0 \times 1 + 0 \times - 2}&{1 \times 0 + 0 \times 1 + 0 \times 4}\\{0 \times 1 + 1 \times 0 + 1 \times 0}&{0 \times 0 + 1 \times 1 + 1 \times - 2}&{0 \times 0 + 1 \times 1 + 1 \times 4}\\{0 \times 1 + \left( { - 2} \right) \times 0 + 4 \times 0}&{0 \times 0 + \left( { - 2} \right) \times 1 + 4 \times - 2}&{0 \times 0 + \left( { - 2} \right) \times 1 + 4 \times 4}\end{array}} \right]\]
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&{ - 1}&5\\0&{ - 10}&{14}\end{array}} \right]\] \[.....\left( 2 \right)\]
Apply the scalar multiplication method to calculate the values of \[cA\], and \[dI\].
We get,
\[cA = c\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&1\\0&{ - 2}&4\end{array}} \right]\]
\[ \Rightarrow cA = \left[ {\begin{array}{*{20}{c}}c&0&0\\0&c&c\\0&{ - 2c}&{4c}\end{array}} \right]\] \[.....\left( 3 \right)\]
And \[dI = d\left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}d&0&0\\0&d&0\\0&0&d\end{array}} \right]\] \[.....\left( 4 \right)\]
Now substitute the equations \[\left( 1 \right)\]\[\left( 2 \right)\]\[\left( 3 \right)\], and \[\left( 4 \right)\] in the given equation \[{A^{ - 1}} = \dfrac{1}{6}\left[ {{A^2} + cA + dI} \right]\].
\[\dfrac{1}{6}\left[ {\begin{array}{*{20}{c}}6&0&0\\0&4&{ - 1}\\0&2&1\end{array}} \right] = \dfrac{1}{6}\left[ {\left[ {\begin{array}{*{20}{c}}1&0&0\\0&{ - 1}&5\\0&{ - 10}&{14}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}c&0&0\\0&c&c\\0&{ - 2c}&{4c}\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}d&0&0\\0&d&0\\0&0&d\end{array}} \right]} \right]\]
\[ \Rightarrow \dfrac{1}{6}\left[ {\begin{array}{*{20}{c}}6&0&0\\0&4&{ - 1}\\0&2&1\end{array}} \right] = \dfrac{1}{6}\left[ {\begin{array}{*{20}{c}}{1 + c + d}&0&0\\0&{ - 1 + c + d}&{5 + c}\\0&{ - 10 - 2c}&{14 + 4c + d}\end{array}} \right]\]
Equate both sides
\[5 + c = - 1\] and \[1 + c + d = 6\]
Solving these equations, we get
\[c = - 6\] and \[d = 11\]
Hence the correct option is C.
Note: Students should keep in mind that the product of two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix. And the adjoint matrix of any matrix is the transpose of its cofactor matrix. We can equate two matrices only if they have the same order.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

