
If \[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\0&2&{ - 3}\\2&1&0\end{array}} \right]\] , \[B = \left( {adj A} \right)\], and \[C = 5A\]. Then find the value of \[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}}\].
A. 5
B. \[25\]
C. \[ - 1\]
D. 1
E. \[125\]
Answer
163.8k+ views
Hint: First, calculate the determinant of the given \[3 \times 3\] matrix \[A\]. Simplify the required expression by using the given equations. Then apply the properties of the determinant of the matrix and solve it to get the required answer.
Formula used:
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
The determinant of a scalar \[m\] times a matrix \[A\] of order \[n\] is: \[\left| {mA} \right| = {m^n}\left| A \right|\]
\[adj\left( {adj A} \right) = {\left| A \right|^{n - 2}}A\]
\[\left| {adj\left( {adj A} \right)} \right| = \left| {{{\left| A \right|}^{n - 2}}A} \right| = {\left( {{{\left| A \right|}^{n - 2}}} \right)^n}\left| A \right|\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\0&2&{ - 3}\\2&1&0\end{array}} \right]\], \[B = \left( {adj A} \right)\], and \[C = 5A\].
Let’s calculate the determinant of the given matrix \[A\].
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 1\left( {2 \times 0 - 1 \times \left( { - 3} \right)} \right) - \left( { - 1} \right)\left( {0 \times 0 - 2 \times \left( { - 3} \right)} \right) + 1\left( {0 \times 1 - 2 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 1\left( 3 \right) + 1\left( 6 \right) + 1\left( { - 4} \right)\]
\[ \Rightarrow \left| A \right| = 3 + 6 - 4\]
\[ \Rightarrow \left| A \right| = 5\]
Now solve the required expression \[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}}\] by using the given equations \[B = \left( {adj A} \right)\], and \[C = 5A\].
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{\left| {adj \left( {adj A} \right)} \right|}}{{\left| {5A} \right|}}\]
Use the properties for the determinant.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{\left| {{{\left| A \right|}^{n - 2}}A} \right|}}{{{5^n}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^{n - 2}}} \right)}^n}\left| A \right|}}{{{5^n}\left| A \right|}}\]
Here, the order of the square matrix is 3.
Then,
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^{3 - 2}}} \right)}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^1}} \right)}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left| A \right|}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
Now substitute the value of the determinant in the above equation.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{5^3} \times 5}}{{{5^3} \times 5}}\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = 1\]
Hence the correct option is D.
Note: Students should keep in mind that the adjoint matrix of any matrix is the transpose of its cofactor matrix. While solving the questions related to the properties of the adjoint matrix, students can make note of the following important adjoint properties:
\[A\left( {adj A} \right) = \left( {adj A} \right)A = \left| A \right|I\]
\[\left| {adj A} \right| = {\left| A \right|^{n - 1}}\], where \[n\] is the order of the square matrix
\[adj\left( {adj A} \right) = {\left| A \right|^{n - 2}}A\]
\[adj\left( {AB} \right) = adj\left( B \right)adj\left( A \right)\]
Formula used:
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
The determinant of a scalar \[m\] times a matrix \[A\] of order \[n\] is: \[\left| {mA} \right| = {m^n}\left| A \right|\]
\[adj\left( {adj A} \right) = {\left| A \right|^{n - 2}}A\]
\[\left| {adj\left( {adj A} \right)} \right| = \left| {{{\left| A \right|}^{n - 2}}A} \right| = {\left( {{{\left| A \right|}^{n - 2}}} \right)^n}\left| A \right|\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\0&2&{ - 3}\\2&1&0\end{array}} \right]\], \[B = \left( {adj A} \right)\], and \[C = 5A\].
Let’s calculate the determinant of the given matrix \[A\].
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 1\left( {2 \times 0 - 1 \times \left( { - 3} \right)} \right) - \left( { - 1} \right)\left( {0 \times 0 - 2 \times \left( { - 3} \right)} \right) + 1\left( {0 \times 1 - 2 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 1\left( 3 \right) + 1\left( 6 \right) + 1\left( { - 4} \right)\]
\[ \Rightarrow \left| A \right| = 3 + 6 - 4\]
\[ \Rightarrow \left| A \right| = 5\]
Now solve the required expression \[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}}\] by using the given equations \[B = \left( {adj A} \right)\], and \[C = 5A\].
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{\left| {adj \left( {adj A} \right)} \right|}}{{\left| {5A} \right|}}\]
Use the properties for the determinant.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{\left| {{{\left| A \right|}^{n - 2}}A} \right|}}{{{5^n}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^{n - 2}}} \right)}^n}\left| A \right|}}{{{5^n}\left| A \right|}}\]
Here, the order of the square matrix is 3.
Then,
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^{3 - 2}}} \right)}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^1}} \right)}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left| A \right|}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
Now substitute the value of the determinant in the above equation.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{5^3} \times 5}}{{{5^3} \times 5}}\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = 1\]
Hence the correct option is D.
Note: Students should keep in mind that the adjoint matrix of any matrix is the transpose of its cofactor matrix. While solving the questions related to the properties of the adjoint matrix, students can make note of the following important adjoint properties:
\[A\left( {adj A} \right) = \left( {adj A} \right)A = \left| A \right|I\]
\[\left| {adj A} \right| = {\left| A \right|^{n - 1}}\], where \[n\] is the order of the square matrix
\[adj\left( {adj A} \right) = {\left| A \right|^{n - 2}}A\]
\[adj\left( {AB} \right) = adj\left( B \right)adj\left( A \right)\]
Recently Updated Pages
JEE Advanced Percentile vs Marks 2025| Previous year's trends

JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

Trending doubts
IIT Kanpur Highest Package, Average & Median Salary

IMU CET SYLLABUS 2025

IIT Roorkee - Admission, Cutoff 2025, Fees, Courses & Placement Details

Difference Between Line Voltage and Phase Voltage

IIT Indore Average Package: Placement Overview

JEE Advanced Syllabus 2025 (OUT)

Other Pages
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis
