
If \[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\0&2&{ - 3}\\2&1&0\end{array}} \right]\] , \[B = \left( {adj A} \right)\], and \[C = 5A\]. Then find the value of \[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}}\].
A. 5
B. \[25\]
C. \[ - 1\]
D. 1
E. \[125\]
Answer
216.3k+ views
Hint: First, calculate the determinant of the given \[3 \times 3\] matrix \[A\]. Simplify the required expression by using the given equations. Then apply the properties of the determinant of the matrix and solve it to get the required answer.
Formula used:
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
The determinant of a scalar \[m\] times a matrix \[A\] of order \[n\] is: \[\left| {mA} \right| = {m^n}\left| A \right|\]
\[adj\left( {adj A} \right) = {\left| A \right|^{n - 2}}A\]
\[\left| {adj\left( {adj A} \right)} \right| = \left| {{{\left| A \right|}^{n - 2}}A} \right| = {\left( {{{\left| A \right|}^{n - 2}}} \right)^n}\left| A \right|\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\0&2&{ - 3}\\2&1&0\end{array}} \right]\], \[B = \left( {adj A} \right)\], and \[C = 5A\].
Let’s calculate the determinant of the given matrix \[A\].
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 1\left( {2 \times 0 - 1 \times \left( { - 3} \right)} \right) - \left( { - 1} \right)\left( {0 \times 0 - 2 \times \left( { - 3} \right)} \right) + 1\left( {0 \times 1 - 2 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 1\left( 3 \right) + 1\left( 6 \right) + 1\left( { - 4} \right)\]
\[ \Rightarrow \left| A \right| = 3 + 6 - 4\]
\[ \Rightarrow \left| A \right| = 5\]
Now solve the required expression \[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}}\] by using the given equations \[B = \left( {adj A} \right)\], and \[C = 5A\].
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{\left| {adj \left( {adj A} \right)} \right|}}{{\left| {5A} \right|}}\]
Use the properties for the determinant.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{\left| {{{\left| A \right|}^{n - 2}}A} \right|}}{{{5^n}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^{n - 2}}} \right)}^n}\left| A \right|}}{{{5^n}\left| A \right|}}\]
Here, the order of the square matrix is 3.
Then,
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^{3 - 2}}} \right)}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^1}} \right)}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left| A \right|}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
Now substitute the value of the determinant in the above equation.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{5^3} \times 5}}{{{5^3} \times 5}}\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = 1\]
Hence the correct option is D.
Note: Students should keep in mind that the adjoint matrix of any matrix is the transpose of its cofactor matrix. While solving the questions related to the properties of the adjoint matrix, students can make note of the following important adjoint properties:
\[A\left( {adj A} \right) = \left( {adj A} \right)A = \left| A \right|I\]
\[\left| {adj A} \right| = {\left| A \right|^{n - 1}}\], where \[n\] is the order of the square matrix
\[adj\left( {adj A} \right) = {\left| A \right|^{n - 2}}A\]
\[adj\left( {AB} \right) = adj\left( B \right)adj\left( A \right)\]
Formula used:
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
The determinant of a scalar \[m\] times a matrix \[A\] of order \[n\] is: \[\left| {mA} \right| = {m^n}\left| A \right|\]
\[adj\left( {adj A} \right) = {\left| A \right|^{n - 2}}A\]
\[\left| {adj\left( {adj A} \right)} \right| = \left| {{{\left| A \right|}^{n - 2}}A} \right| = {\left( {{{\left| A \right|}^{n - 2}}} \right)^n}\left| A \right|\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\0&2&{ - 3}\\2&1&0\end{array}} \right]\], \[B = \left( {adj A} \right)\], and \[C = 5A\].
Let’s calculate the determinant of the given matrix \[A\].
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 1\left( {2 \times 0 - 1 \times \left( { - 3} \right)} \right) - \left( { - 1} \right)\left( {0 \times 0 - 2 \times \left( { - 3} \right)} \right) + 1\left( {0 \times 1 - 2 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 1\left( 3 \right) + 1\left( 6 \right) + 1\left( { - 4} \right)\]
\[ \Rightarrow \left| A \right| = 3 + 6 - 4\]
\[ \Rightarrow \left| A \right| = 5\]
Now solve the required expression \[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}}\] by using the given equations \[B = \left( {adj A} \right)\], and \[C = 5A\].
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{\left| {adj \left( {adj A} \right)} \right|}}{{\left| {5A} \right|}}\]
Use the properties for the determinant.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{\left| {{{\left| A \right|}^{n - 2}}A} \right|}}{{{5^n}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^{n - 2}}} \right)}^n}\left| A \right|}}{{{5^n}\left| A \right|}}\]
Here, the order of the square matrix is 3.
Then,
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^{3 - 2}}} \right)}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^1}} \right)}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left| A \right|}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
Now substitute the value of the determinant in the above equation.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{5^3} \times 5}}{{{5^3} \times 5}}\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = 1\]
Hence the correct option is D.
Note: Students should keep in mind that the adjoint matrix of any matrix is the transpose of its cofactor matrix. While solving the questions related to the properties of the adjoint matrix, students can make note of the following important adjoint properties:
\[A\left( {adj A} \right) = \left( {adj A} \right)A = \left| A \right|I\]
\[\left| {adj A} \right| = {\left| A \right|^{n - 1}}\], where \[n\] is the order of the square matrix
\[adj\left( {adj A} \right) = {\left| A \right|^{n - 2}}A\]
\[adj\left( {AB} \right) = adj\left( B \right)adj\left( A \right)\]
Recently Updated Pages
Haryana B.Tech Counselling 2023: Seat Allotment Procedure

IIT Ropar Cutoff 2025: Expected Ranks for CSE, Mechanical, Electrical, OBC & More

JEE Principles Related to Practical Chemistry important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Main Surface Chemistry – Explanation, Analysis Techniques and Applications

Difference Between Asteroid and Comet

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

