
Find the value of $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx$.
A. $\pi $
B. $\dfrac{\pi }{2}$
C. $\dfrac{\pi }{4}$
D. $\dfrac{\pi }{3}$
Answer
160.8k+ views
Hint: In this question, we have $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx$. So, we will consider this as equation 1. Now we will use the identity $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$. After that, we will get equation 2. Now we will add equations 1 and 2 to get the simplified form of the given expression. At last, we will obtain the final result by substituting the values of the limits.
Formula Used: In this question, we will use $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$.
Complete- step by -step solution: Let us consider $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx$ ….... (1)
First, we will use the identity $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$
On substituting the identity in the given integral, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot \left( \dfrac{\pi }{2}-x \right)}}{\sqrt{\cot \left( \dfrac{\pi }{2}-x \right)}+\sqrt{\tan \left( \dfrac{\pi }{2}-x \right)}}}dx$
By using the Cofunction identities $\cot \left( \dfrac{\pi }{2}-x \right)=\tan x$and $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}}dx$ ….... (2)
Now, adding equations (1) and (2),
$\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}}dx \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}+\sqrt{\tan x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx \\
\end{align}$
By canceling the same terms, we get
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)dx}$
We will further integrate 1 with respect to $x$.
$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$
Substitute the values of the limit, and we get
$\begin{align}
& \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
& \Rightarrow I=\dfrac{\pi }{2\times 2} \\
& \therefore I=\dfrac{\pi }{4} \\
\end{align}$
Thus, the obtained value will be the required value of the given integration.
Option ‘C’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier. And it should be remembered that, on applying limits, the upper limit is applied first and the lower limit is applied.
Formula Used: In this question, we will use $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$.
Complete- step by -step solution: Let us consider $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx$ ….... (1)
First, we will use the identity $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$
On substituting the identity in the given integral, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot \left( \dfrac{\pi }{2}-x \right)}}{\sqrt{\cot \left( \dfrac{\pi }{2}-x \right)}+\sqrt{\tan \left( \dfrac{\pi }{2}-x \right)}}}dx$
By using the Cofunction identities $\cot \left( \dfrac{\pi }{2}-x \right)=\tan x$and $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}}dx$ ….... (2)
Now, adding equations (1) and (2),
$\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}}dx \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}+\sqrt{\tan x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx \\
\end{align}$
By canceling the same terms, we get
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)dx}$
We will further integrate 1 with respect to $x$.
$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$
Substitute the values of the limit, and we get
$\begin{align}
& \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
& \Rightarrow I=\dfrac{\pi }{2\times 2} \\
& \therefore I=\dfrac{\pi }{4} \\
\end{align}$
Thus, the obtained value will be the required value of the given integration.
Option ‘C’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier. And it should be remembered that, on applying limits, the upper limit is applied first and the lower limit is applied.
Recently Updated Pages
The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

JEE Advanced 2021 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

JEE Advanced Study Plan 2025: Expert Tips and Preparation Guide

JEE Advanced 2022 Physics Question Paper 2 with Solutions

Carbohydrates Class 12 Important Questions JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
