
Find the value of $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx$.
A. $\pi $
B. $\dfrac{\pi }{2}$
C. $\dfrac{\pi }{4}$
D. $\dfrac{\pi }{3}$
Answer
164.7k+ views
Hint: In this question, we have $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx$. So, we will consider this as equation 1. Now we will use the identity $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$. After that, we will get equation 2. Now we will add equations 1 and 2 to get the simplified form of the given expression. At last, we will obtain the final result by substituting the values of the limits.
Formula Used: In this question, we will use $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$.
Complete- step by -step solution: Let us consider $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx$ ….... (1)
First, we will use the identity $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$
On substituting the identity in the given integral, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot \left( \dfrac{\pi }{2}-x \right)}}{\sqrt{\cot \left( \dfrac{\pi }{2}-x \right)}+\sqrt{\tan \left( \dfrac{\pi }{2}-x \right)}}}dx$
By using the Cofunction identities $\cot \left( \dfrac{\pi }{2}-x \right)=\tan x$and $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}}dx$ ….... (2)
Now, adding equations (1) and (2),
$\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}}dx \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}+\sqrt{\tan x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx \\
\end{align}$
By canceling the same terms, we get
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)dx}$
We will further integrate 1 with respect to $x$.
$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$
Substitute the values of the limit, and we get
$\begin{align}
& \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
& \Rightarrow I=\dfrac{\pi }{2\times 2} \\
& \therefore I=\dfrac{\pi }{4} \\
\end{align}$
Thus, the obtained value will be the required value of the given integration.
Option ‘C’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier. And it should be remembered that, on applying limits, the upper limit is applied first and the lower limit is applied.
Formula Used: In this question, we will use $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$.
Complete- step by -step solution: Let us consider $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx$ ….... (1)
First, we will use the identity $\int\limits_{0}^{a}{f(x)dx=\int\limits_{0}^{a}{f(x-a)dx}}$
On substituting the identity in the given integral, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot \left( \dfrac{\pi }{2}-x \right)}}{\sqrt{\cot \left( \dfrac{\pi }{2}-x \right)}+\sqrt{\tan \left( \dfrac{\pi }{2}-x \right)}}}dx$
By using the Cofunction identities $\cot \left( \dfrac{\pi }{2}-x \right)=\tan x$and $\tan \left( \dfrac{\pi }{2}-x \right)=\cot x$, we get
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}}dx$ ….... (2)
Now, adding equations (1) and (2),
$\begin{align}
& I+I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\tan x}}{\sqrt{\tan x}+\sqrt{\cot x}}}dx \\
& \Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cot x}+\sqrt{\tan x}}{\sqrt{\cot x}+\sqrt{\tan x}}}dx \\
\end{align}$
By canceling the same terms, we get
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{(1)dx}$
We will further integrate 1 with respect to $x$.
$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$
Substitute the values of the limit, and we get
$\begin{align}
& \Rightarrow 2I=\left[ \dfrac{\pi }{2}-0 \right] \\
& \Rightarrow I=\dfrac{\pi }{2\times 2} \\
& \therefore I=\dfrac{\pi }{4} \\
\end{align}$
Thus, the obtained value will be the required value of the given integration.
Option ‘C’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly $0$ to $\dfrac{\pi }{2}$. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier. And it should be remembered that, on applying limits, the upper limit is applied first and the lower limit is applied.
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
