
A rectangle is constructed in the complex plane with its sides parallel to the axes and its center is situated at the origin. If one of the vertices of the rectangle is $a+ib\sqrt{3}$, then the area of the rectangle is
A. $ab\sqrt{3}$
B. $2ab\sqrt{3}$
C. $3ab\sqrt{3}$
D. $4ab\sqrt{3}$
Answer
161.7k+ views
Hint: In this question, we have to find the area of the given rectangle. Here the rectangle is constructed in such a way that, it is divided into four equal parts, and each part is another rectangle. So, the length and width of a rectangular part can able to find with the given details. In such a way we can calculate the area of the rectangle.
Formula Used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
Complete step by step solution: Given that,
The rectangle is formed in such a way that its sides are parallel to the axes and the center of the rectangle is the origin.
The rectangle is as shown below:

Consider the given coordinate as $B=(a,b\sqrt{3})=a+ib\sqrt{3}$
Then, the other vertices at one part of the rectangle are
$O(0,0);A(a,0);C(0,b\sqrt{3})$
Then the area of that part of the rectangle $(OABC)$ is
$\begin{align}
& Area=l\times b \\
& \text{ }=a\times b\sqrt{3} \\
& \text{ }=ab\sqrt{3} \\
\end{align}$
Thus, the area of the whole rectangle is
$\begin{align}
& =4\times Area(OABC) \\
& =4\times ab\sqrt{3} \\
& =4ab\sqrt{3} \\
\end{align}$
Option ‘D’ is correct
Note: Here we need to remember that the rectangle has its centre at the centre of the coordinate axes. So, we can able to calculate the area of one of the four parts of the rectangle.
Formula Used: The complex number $(x,y)$ is represented by $x+iy$.
If $z=x+iy\in C$, then $x$ is called the real part and $y$ is called the imaginary part of $z$. These are represented by $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ respectively.
$z=x+iy$ be a complex number such that $\left| z \right|=r$ and $\theta $ be the amplitude of $z$. So, $\cos \theta =\dfrac{x}{r},\sin \theta =\dfrac{b}{r}$
And we can write the magnitude as
$\begin{align}
& \left| z \right|=\left| x+iy \right| \\
& \Rightarrow r=\sqrt{{{x}^{2}}+{{y}^{2}}} \\
\end{align}$
Thus, we can write
$z=x+iy=r\cos \theta +ir\sin \theta =r(\cos \theta +i\sin \theta )$
This is said to be the mod amplitude form or the polar form of $z$.
Where $\cos \theta +i\sin \theta $ is denoted by $cis\theta $ and the Euler’s formula is $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
Complete step by step solution: Given that,
The rectangle is formed in such a way that its sides are parallel to the axes and the center of the rectangle is the origin.
The rectangle is as shown below:

Consider the given coordinate as $B=(a,b\sqrt{3})=a+ib\sqrt{3}$
Then, the other vertices at one part of the rectangle are
$O(0,0);A(a,0);C(0,b\sqrt{3})$
Then the area of that part of the rectangle $(OABC)$ is
$\begin{align}
& Area=l\times b \\
& \text{ }=a\times b\sqrt{3} \\
& \text{ }=ab\sqrt{3} \\
\end{align}$
Thus, the area of the whole rectangle is
$\begin{align}
& =4\times Area(OABC) \\
& =4\times ab\sqrt{3} \\
& =4ab\sqrt{3} \\
\end{align}$
Option ‘D’ is correct
Note: Here we need to remember that the rectangle has its centre at the centre of the coordinate axes. So, we can able to calculate the area of one of the four parts of the rectangle.
Recently Updated Pages
JEE Advanced Course 2025 - Subject List, Syllabus, Course, Details

Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
