
\[2 + 4 + 7 + 11 + 16 + ........n{\rm{ terms}}\]Equals
A. \[\dfrac{1}{6}\left( {{n^2} + 3n + 8} \right)\]
В. \[\dfrac{n}{6}\left( {{n^2} + 3n + 8} \right)\]
C. \[\dfrac{1}{6}\left( {{n^2} - 3n + 8} \right)\]
D. \[\dfrac{n}{6}\left( {{n^2} - 3n + 8} \right)\]
Answer
164.4k+ views
Hint: The series is \[2 + 4 + 7 + 11 + 16 + ........n{\rm{ terms}}\]therefore the first issue is figuring out its generalized form. Because there is no common difference or set common ratio in the given series, it cannot be solved using the AP and GP method. The provided series is neither an arithmetic progression nor a geometric progression. We shall solve them in accordance with the only suggestion they provided, which is five numbers in the form of addition.
Formula Used: The general formula of infinite series is
\[\dfrac{{n(n + 1)}}{2}\]
Complete step by step solution: We have been provided a series in the question.
Let us consider the series is
\[{\rm{S}} = 2 + 4 + 7 + 11 + 16 + \ldots \ldots n{\rm{ terms }}\]
Now, we have to write the above given series as below,
\[ \Rightarrow {\rm{S}} = \left( {1 + \dfrac{{{1^2} + 1}}{2}} \right) + \left( {1 + \dfrac{{{2^2} + 2}}{2}} \right) + \left( {1 + \dfrac{{{3^2} + 3}}{2}} \right) + \left( {1 + \dfrac{{{4^2} + 4}}{2}} \right) + 16 + \ldots \ldots \left( {1 + \dfrac{{{n^2} + n}}{2}} \right){\rm{ terms}}\]
Thus, in terms of formula for n terms, we can write the general expression as,
\[ \Rightarrow {a_n} = \left( {1 + \dfrac{{{n^2} + n}}{2}} \right)\]
Now, we have to determine the sum of the \[{{\rm{n}}^{{\rm{th}}}}\] term of the given series,
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = \sum\limits_{{\rm{n}} - 1}^\infty {{{\rm{a}}_{\rm{n}}}} \]
Now, substitute the general form of \[{a_n}\] to the above expression, we get
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = \sum\limits_{{\rm{n}} - 1}^\infty {\left( {1 + \dfrac{{{{\rm{n}}^2} + {\rm{n}}}}{2}} \right)} \]
And the required summation is as below,
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = \sum\limits_{{\rm{n}} - 1}^\infty 1 + \sum\limits_{{\rm{n}} - 1}^\infty {\dfrac{{{n^2}}}{2}} + \sum\limits_{{\rm{n}} - 1}^\infty {\dfrac{n}{2}} \]
Now, let us apply the formula we have,
\[\sum\limits_{{\rm{n}} - 1}^\infty 1 = n,\sum\limits_{{\rm{n}} - 1}^\infty {{n^2}} = \dfrac{1}{2}\left( {\dfrac{{n(n + 1)(2n + 1)}}{6}} \right),\sum\limits_{{\rm{n}} - 1}^\infty n = \left( {\dfrac{{n(n + 1)}}{2}} \right)\]
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = n + \dfrac{1}{2}\left( {\dfrac{{n(n + 1)(2n + 1)}}{6}} \right) + \dfrac{1}{2}\left( {\dfrac{{n(n + 1)}}{2}} \right)\]
Now, we have to multiply the term in the denominator by \[\dfrac{1}{2}\] we get
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = n\left( {\dfrac{{12 + (n + 1)(2n + 1) + (3n + 3)}}{{12}}} \right)\]
Now, let’s simplify the numerator we get
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = n\left( {\dfrac{{12 + (n + 1)(2n + 4)}}{{12}}} \right)\]
Now, we have to take 2 as common, we have
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = n\left( {\dfrac{{6 + (n + 1)(n + 2)}}{6}} \right)\]
Now, we have to expand the above expression, we get
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = n\left( {\dfrac{{{n^2} + 3n + 2 + 6}}{6}} \right)\]
Now, we have to take 6 as common, we get
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = \dfrac{n}{6}\left( {{n^2} + 3n + 8} \right)\]
Therefore, \[2 + 4 + 7 + 11 + 16 + ........n{\rm{ terms}}\]equals \[{{\rm{S}}_{\rm{n}}} = \dfrac{n}{6}\left( {{n^2} + 3n + 8} \right)\]
Option ‘B’ is correct
Note: Students got confused mostly in these types of problems because the series given is neither arithmetic nor geometric. So, it is difficult to apply the formula, for that we have solved the series with the only given data a series in form addition to determine the solution using the general formula of infinite series of n terms.
Formula Used: The general formula of infinite series is
\[\dfrac{{n(n + 1)}}{2}\]
Complete step by step solution: We have been provided a series in the question.
Let us consider the series is
\[{\rm{S}} = 2 + 4 + 7 + 11 + 16 + \ldots \ldots n{\rm{ terms }}\]
Now, we have to write the above given series as below,
\[ \Rightarrow {\rm{S}} = \left( {1 + \dfrac{{{1^2} + 1}}{2}} \right) + \left( {1 + \dfrac{{{2^2} + 2}}{2}} \right) + \left( {1 + \dfrac{{{3^2} + 3}}{2}} \right) + \left( {1 + \dfrac{{{4^2} + 4}}{2}} \right) + 16 + \ldots \ldots \left( {1 + \dfrac{{{n^2} + n}}{2}} \right){\rm{ terms}}\]
Thus, in terms of formula for n terms, we can write the general expression as,
\[ \Rightarrow {a_n} = \left( {1 + \dfrac{{{n^2} + n}}{2}} \right)\]
Now, we have to determine the sum of the \[{{\rm{n}}^{{\rm{th}}}}\] term of the given series,
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = \sum\limits_{{\rm{n}} - 1}^\infty {{{\rm{a}}_{\rm{n}}}} \]
Now, substitute the general form of \[{a_n}\] to the above expression, we get
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = \sum\limits_{{\rm{n}} - 1}^\infty {\left( {1 + \dfrac{{{{\rm{n}}^2} + {\rm{n}}}}{2}} \right)} \]
And the required summation is as below,
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = \sum\limits_{{\rm{n}} - 1}^\infty 1 + \sum\limits_{{\rm{n}} - 1}^\infty {\dfrac{{{n^2}}}{2}} + \sum\limits_{{\rm{n}} - 1}^\infty {\dfrac{n}{2}} \]
Now, let us apply the formula we have,
\[\sum\limits_{{\rm{n}} - 1}^\infty 1 = n,\sum\limits_{{\rm{n}} - 1}^\infty {{n^2}} = \dfrac{1}{2}\left( {\dfrac{{n(n + 1)(2n + 1)}}{6}} \right),\sum\limits_{{\rm{n}} - 1}^\infty n = \left( {\dfrac{{n(n + 1)}}{2}} \right)\]
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = n + \dfrac{1}{2}\left( {\dfrac{{n(n + 1)(2n + 1)}}{6}} \right) + \dfrac{1}{2}\left( {\dfrac{{n(n + 1)}}{2}} \right)\]
Now, we have to multiply the term in the denominator by \[\dfrac{1}{2}\] we get
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = n\left( {\dfrac{{12 + (n + 1)(2n + 1) + (3n + 3)}}{{12}}} \right)\]
Now, let’s simplify the numerator we get
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = n\left( {\dfrac{{12 + (n + 1)(2n + 4)}}{{12}}} \right)\]
Now, we have to take 2 as common, we have
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = n\left( {\dfrac{{6 + (n + 1)(n + 2)}}{6}} \right)\]
Now, we have to expand the above expression, we get
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = n\left( {\dfrac{{{n^2} + 3n + 2 + 6}}{6}} \right)\]
Now, we have to take 6 as common, we get
\[ \Rightarrow {{\rm{S}}_{\rm{n}}} = \dfrac{n}{6}\left( {{n^2} + 3n + 8} \right)\]
Therefore, \[2 + 4 + 7 + 11 + 16 + ........n{\rm{ terms}}\]equals \[{{\rm{S}}_{\rm{n}}} = \dfrac{n}{6}\left( {{n^2} + 3n + 8} \right)\]
Option ‘B’ is correct
Note: Students got confused mostly in these types of problems because the series given is neither arithmetic nor geometric. So, it is difficult to apply the formula, for that we have solved the series with the only given data a series in form addition to determine the solution using the general formula of infinite series of n terms.
Recently Updated Pages
Difference Between AC and DC Generator

Difference Between Starch and Cellulose - Introduction and Structural Difference

Know About Difference Between Zener Breakdown and Avalanche Breakdown

Stefan Boltzmann Law - Definition and Equation

Thermodynamics: Introduction, Laws, Systems, Notes PDF & Thermal Equilibrium

Thermodynamics and Thermochemistry- Definition, Equation, Laws, Difference, and Facts

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
